language-icon Old Web
English
Sign In

Crystallographic point group

In crystallography, a crystallographic point group is a set of symmetry operations, like rotations or reflections, that leave a central point fixed while moving the edges and faces of the crystal to the positions of features of the same size and shape. For a periodic crystal (as opposed to a quasicrystal), the group must also maintain the three-dimensional translational symmetry that defines crystallinity. The geometric properties of a crystal must look exactly the same before and after applying any of the operations in its point group. In the classification of crystals, each point group defines a so-called (geometric) crystal class. In crystallography, a crystallographic point group is a set of symmetry operations, like rotations or reflections, that leave a central point fixed while moving the edges and faces of the crystal to the positions of features of the same size and shape. For a periodic crystal (as opposed to a quasicrystal), the group must also maintain the three-dimensional translational symmetry that defines crystallinity. The geometric properties of a crystal must look exactly the same before and after applying any of the operations in its point group. In the classification of crystals, each point group defines a so-called (geometric) crystal class. There are infinitely many three-dimensional point groups. However, the crystallographic restriction on the general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the-same as the 32 types of morphological (external) crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms. The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect. The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, mineralogists, and physicists. For the correspondence of the two systems below, see crystal system. In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space. D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups. An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are

[ "Molecule", "Crystal", "Crystal structure" ]
Parent Topic
Child Topic
    No Parent Topic