language-icon Old Web
English
Sign In

Peto's paradox

Peto's paradox is the observation, named after Richard Peto, that at the species level, the incidence of cancer does not appear to correlate with the number of cells in an organism. For example, the incidence of cancer in humans is much higher than the incidence of cancer in whales. This is despite the fact that a whale has many more cells than a human. If the probability of carcinogenesis were constant across cells, one would expect whales to have a higher incidence of cancer than humans.A man has 1000 times as many cells as a mouse... and we usually live at least 30 times as long as mice. Exposure of two similar organisms to risk of carcinoma, one for 30 times as long as the other, would give perhaps 304 or 306 (i.e., a million or a billion) times the risk of carcinoma induction per epithelial cell. However, it seems that, in the wild, the probabilities of carcinoma induction in mice and in men are not vastly different. Are our stem cells really, then, a billion or a trillion times more 'cancerproof' than murine stem cells? This is biologically pretty implausible; if human DNA is no more resistant to mutagenesis in vitro than mouse DNA, why don't we all die of multiple carcinomas at an early age? Peto's paradox is the observation, named after Richard Peto, that at the species level, the incidence of cancer does not appear to correlate with the number of cells in an organism. For example, the incidence of cancer in humans is much higher than the incidence of cancer in whales. This is despite the fact that a whale has many more cells than a human. If the probability of carcinogenesis were constant across cells, one would expect whales to have a higher incidence of cancer than humans. Peto, a statistical epidemiologist at the University of Oxford, first formulated the paradox in 1977. Writing an overview of the multistage model of cancer, Peto noted that, on a cell-for-cell basis, humans were much less susceptible to cancer than mice:

[ "Carcinogenesis", "cancer incidence", "cancer risk" ]
Parent Topic
Child Topic
    No Parent Topic