language-icon Old Web
English
Sign In

Trimethylglycine

Trimethylglycine (TMG) is an amino acid derivative that occurs in plants. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because, in the 19th century, it was discovered in sugar beets. Since then, many other betaines have been discovered, and the more specific name glycine betaine distinguishes this one. Trimethylglycine (TMG) is an amino acid derivative that occurs in plants. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because, in the 19th century, it was discovered in sugar beets. Since then, many other betaines have been discovered, and the more specific name glycine betaine distinguishes this one. Trimethylglycine is an N-trimethylated amino acid. This quaternary ammonium exists as the zwitterion at neutral pH. Strong acids such as hydrochloric acid convert TMG to various salts, with HCl yielding betaine hydrochloride: Demethylation of TMG gives dimethylglycine. Degradation of TMG yields trimethylamine, the scent of putrefying fish. Processing sucrose from sugar beets yields glycine betaine as a byproduct. The value of the TMG rivals that of the sugar content in sugar beets. In most organisms, glycine betaine is biosynthesized by oxidation of choline in two steps. The intermediate, betaine aldehyde, is generated by the action of the enzyme mitochondrial choline oxidase (choline dehydrogenase, EC 1.1.99.1). Betaine aldehyde is further oxidised in the mitochondria in mice to betaine by the enzyme betaine aldehyde dehydrogenase (EC 1.2.1.8). In humans betaine aldehyde activity is performed by a nonspecific cystosolic aldehyde dehydrogenase enzyme (EC 1.2.1.3) TMG is an organic osmolyte. Sugar beet was cultivated from Sea beet, which requires osmolytes in order to survive in the salty soils of coastal areas. TMG also occurs in high concentrations (~10 mM) in many marine invertebrates, such as crustaceans and molluscs. It serves as a potent appetitive attractant to generalist carnivores such as the predatory sea-slug Pleurobranchaea californica. TMG is an important cofactor in methylation, a process that occurs in every mammalian cell donating methyl groups (-CH3) for other processes in the body. These processes include the synthesis of neurotransmitters such as dopamine and serotonin. Methylation is also required for the biosynthesis of melatonin and the electron transport chain constituent coenzyme Q10, as well as the methylation of DNA for epigenetics. The major step in the methylation cycle is the remethylation of homocysteine, a compound which is naturally generated during demethylation of the essential amino acid methionine. Despite its natural formation, homocysteine has been linked to inflammation, depression, specific forms of dementia, and various types of vascular disease. The remethylation process that detoxifies homocysteine and converts it back to methionine can occur via either of two pathways. The pathway present in virtually all cells involves the enzyme methionine synthase (MS), which requires vitamin B12 as a cofactor, and also depends indirectly on folate and other B vitamins. The second pathway (restricted to liver and kidney in most mammals) involves betaine-homocysteine methyltransferase (BHMT) and requires TMG as a cofactor. During normal physiological conditions, the two pathways contribute equally to removal of homocysteine in the body. Further degradation of betaine, via the enzyme dimethylglycine dehydrogenase produces folate, thus contributing back to methionine synthase. Betaine is thus involved in the synthesis of many biologically important molecules, and may be even more important in situations where the major pathway for the regeneration of methionine from homocysteine has been compromised by genetic polymorphisms such as mutations in the MS gene. Factory farms supplement fodder with TMG and lysine to increase livestocks' muscle mass (and, therefore, 'carcass yield', the amount of usable meat).

[ "Composition (visual arts)", "Betaine" ]
Parent Topic
Child Topic
    No Parent Topic