language-icon Old Web
English
Sign In

Tajima's D

Tajima's D is a population genetic test statistic created by and named after the Japanese researcher Fumio Tajima. Tajima's D is computed as the difference between two measures of genetic diversity: the mean number of pairwise differences and the number of segregating sites, each scaled so that they are expected to be the same in a neutrally evolving population of constant size.You vs A: 3 polymorphisms Tajima's D is a population genetic test statistic created by and named after the Japanese researcher Fumio Tajima. Tajima's D is computed as the difference between two measures of genetic diversity: the mean number of pairwise differences and the number of segregating sites, each scaled so that they are expected to be the same in a neutrally evolving population of constant size. The purpose of Tajima's D test is to distinguish between a DNA sequence evolving randomly ('neutrally') and one evolving under a non-random process, including directional selection or balancing selection, demographic expansion or contraction, genetic hitchhiking, or introgression. A randomly evolving DNA sequence contains mutations with no effect on the fitness and survival of an organism. The randomly evolving mutations are called 'neutral', while mutations under selection are 'non-neutral'. For example, a mutation that causes prenatal death or severe disease would be expected to be under selection. In the population as a whole, the frequency of a neutral mutation fluctuates randomly (i.e. the percentage of individuals in the population with the mutation changes from one generation to the next, and this percentage is equally likely to go up or down) through genetic drift. The strength of genetic drift depends on population size. If a population is at a constant size with constant mutation rate, the population will reach an equilibrium of gene frequencies. This equilibrium has important properties, including the number of segregating sites S {displaystyle S} , and the number of nucleotide differences between pairs sampled (these are called pairwise differences). To standardize the pairwise differences, the mean or 'average' number of pairwise differences is used. This is simply the sum of the pairwise differences divided by the number of pairs, and is often symbolized by π {displaystyle pi } . The purpose of Tajima's test is to identify sequences which do not fit the neutral theory model at equilibrium between mutation and genetic drift. In order to perform the test on a DNA sequence or gene, you need to sequence homologous DNA for at least 3 individuals. Tajima's statistic computes a standardized measure of the total number of segregating sites (these are DNA sites that are polymorphic) in the sampled DNA and the average number of mutations between pairs in the sample. The two quantities whose values are compared are both method of moments estimates of the population genetic parameter theta, and so are expected to equal the same value. If these two numbers only differ by as much as one could reasonably expect by chance, then the null hypothesis of neutrality cannot be rejected. Otherwise, the null hypothesis of neutrality is rejected.

[ "Genetic variation", "Locus (genetics)", "Population genetics", "Polymorphism (computer science)", "Allele" ]
Parent Topic
Child Topic
    No Parent Topic