language-icon Old Web
English
Sign In

Ruthenium

Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named it after the Latin name of his homeland, Ruthenia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa. Ruthenium, a polyvalent hard white metal, is a member of the platinum group and is in group 8 of the periodic table: Whereas all other group 8 elements have 2 electrons in the outermost shell, in ruthenium, the outermost shell has only one electron (the final electron is in a lower shell). This anomaly is observed in the neighboring metals niobium (41), molybdenum (42), and rhodium (45). Ruthenium has four crystal modifications and does not tarnish unless subject to high temperatures. Ruthenium dissolves in fused alkalis to give ruthenates (RuO2−4), is not attacked by acids (even aqua regia) but is attacked by halogens at high temperatures. Indeed, ruthenium is most readily attacked by oxidizing agents. Small amounts of ruthenium can increase the hardness of platinum and palladium. The corrosion resistance of titanium is increased markedly by the addition of a small amount of ruthenium. The metal can be plated by electroplating and by thermal decomposition. A ruthenium-molybdenum alloy is known to be superconductive at temperatures below 10.6 K. Ruthenium is the last of the 4d transition metals that can assume the group oxidation state +8, and even then it is less stable there than the heavier congener osmium: this is the first group from the left of the table where the second and third-row transition metals display notable differences in chemical behavior. Like iron but unlike osmium, ruthenium can form aqueous cations in its lower oxidation states of +2 and +3. Ruthenium is the first in a downward trend in the melting and boiling points and atomization enthalpy in the 4d transition metals after the maximum seen at molybdenum, because the 4d subshell is more than half full and the electrons are contributing less to metallic bonding. (Technetium, the previous element, has an exceptionally low value that is off the trend due to its half-filled 4d55s2 configuration, though the small amount of energy needed to excite it to a 4d65s1 configuration indicates that it is not as far off the trend in the 4d series as manganese in the 3d transition series.) Unlike the lighter congener iron, ruthenium is paramagnetic at room temperature, as iron also is above its Curie point. The reduction potentials in acidic aqueous solution for some common ruthenium ions are shown below: Naturally occurring ruthenium is composed of seven stable isotopes. Additionally, 34 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 373.59 days, 103Ru with a half-life of 39.26 days and 97Ru with a half-life of 2.9 days. Fifteen other radioisotopes have been characterized with atomic weights ranging from 89.93 u (90Ru) to 114.928 u (115Ru). Most of these have half-lives that are less than five minutes except 95Ru (half-life: 1.643 hours) and 105Ru (half-life: 4.44 hours).

[ "Catalysis", "TRISPHAT", "Ruthenium(III) chloride", "Ruthenium(IV) oxide", "Transfer hydrogenation", "Ruthenium chloride" ]
Parent Topic
Child Topic
    No Parent Topic