language-icon Old Web
English
Sign In

Mid-ocean ridge

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of ~ 2,600 meters (8,500 ft) and rises about two kilometers above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at the linear weakness in the oceanic crust, and emerges as lava, creating new crust and lithosphere upon cooling. The Mid-Atlantic Ridge is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are called mid-ocean ridges. Mid-ocean ridges around the globe are linked by plate tectonic boundaries and appear similar to the seam of a baseball. The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi).Oceanic ridge and deep sea vent chemistryPlates in the crust of the earth, according to the plate tectonics theorySeafloor magnetic stripingA demonstration of magnetic striping A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of ~ 2,600 meters (8,500 ft) and rises about two kilometers above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at the linear weakness in the oceanic crust, and emerges as lava, creating new crust and lithosphere upon cooling. The Mid-Atlantic Ridge is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are called mid-ocean ridges. Mid-ocean ridges around the globe are linked by plate tectonic boundaries and appear similar to the seam of a baseball. The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi). At the spreading center on a mid-ocean ridge the depth of the seafloor is approximately 2,600 meters (8,500 ft). On the ridge flanks the depth of the seafloor (or the height of a location on a mid-ocean ridge above a base-level) is closely correlated with its age (age of the lithosphere where depth is measured). The age-depth relation can be modeled by the cooling of a lithosphere plate or mantle half-space. A good approximation is that the depth of the seafloor at a location on a spreading mid-ocean ridge proportional to the square root of the age of the seafloor. The overall shape of ridges results from Pratt isostacy: close to the ridge axis there is hot, low-density mantle supporting the oceanic crust. As the oceanic plate cools, away from the ridge axis, the oceanic mantle lithosphere (the colder, denser part of the mantle that, together with the crust, comprises the oceanic plates) thickens and the density increases. Thus older seafloor is underlain by denser material and is deeper. Spreading rates range from approximately 10-200 mm/yr. Slow-spreading ridges such as the Mid-Atlantic Ridge have spread much less far (showing a narrower profile) than faster ridges such as the East Pacific Rise (wider profile) for the same amount of time and cooling and consequent bathymetric deepening. Slow-spreading ridges (less than 40 mm/yr) generally have large rift valleys, sometimes as wide as 10–20 km (6.2–12.4 mi), and very rugged terrain at the ridge crest that can have relief of up to a 1,000 m (3,300 ft). By contrast, fast-spreading ridges (greater than 90 mm/yr) such as the East Pacific Rise lack rift valleys. These have narrow, sharp ridge crests surrounded by generally flat topography that slopes away from the crest over many hundreds of miles. The spreading center or axis, commonly connects to a transform fault oriented at right angles to the axis. The flanks of mid-ocean ridges are in many places marked by the inactive scars of transform faults called fracture zones. At faster spreading rates the axes often display overlapping spreading centers that lack connecting transform faults. The depth of the axis varies in a systematic way with shallower depths mid-way between offsets such as transform faults and overlapping spreading centers dividing the axis into segments; this is believed due to variations in magma supply to the spreading center. Ultra-slow spreading ridges (less than 2 cm/yr), such as the Southwest India and the Arctic Ridges form both magmatic and amagmatic (currently lack volcanic activity) ridge segments without transform faults. Mid-ocean ridges exhibit active volcanism and seismicity. The oceanic crust is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near the axis because of decompression melting in the underlying Earth's mantle. The isentropic upwelling solid mantle material exceeds the solidus temperature and melts. The crystallized magma forms new crust of basalt known as MORB for mid-ocean ridge basalt, and gabbro below it in the lower oceanic crust. Mid-ocean ridge basalt is a tholeiitic basalt and is low in incompatible elements. Hydrothermal vents are a common feature at oceanic spreading centers. The oceanic crust and lithosphere is made up of rocks much younger than the Earth itself. Most oceanic crust in the ocean basins is less than 200 million years old. As the oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere, which sits above the less rigid and viscous asthenosphere. Oceanic lithosphere is formed at an oceanic ridge, while the lithosphere is subducted back into the asthenosphere at ocean trenches. Two processes, ridge-push and slab pull, are thought to be responsible for spreading at mid-ocean ridges. Ridge push refers to the gravitation sliding of the ocean plate that is raised above the hotter asthenosphere, thus creating a body force causing sliding of the plate downslope. In slab pull the weight of a tectonic plate being subducted (pulled) below an overlying plate at a subduction zone drags the rest of the plate along behind it. The slab pull mechanism is considered to be contributing more than the ridge push. The other process proposed to contribute to the formation of new oceanic crust at mid-ocean ridges is the 'mantle conveyor' (see image). However, there have been some studies which have shown that the upper mantle (asthenosphere) is too plastic (flexible) to generate enough friction to pull the tectonic plate along. Moreover, unlike in the image above, mantle upwelling that causes magma to form beneath the ocean ridges appears to involve only its upper 400 km (250 mi), as deduced from seismic tomography and from studies of the seismic discontinuity at about 400 km (250 mi). The relatively shallow depths from which the upwelling mantle rises below ridges are more consistent with the 'slab-pull' process. On the other hand, some of the world's largest tectonic plates such as the North American Plate are in motion, yet are nowhere being subducted. The rate at which the mid-ocean ridge creates new material is known as the spreading rate, and is typically measured in mm/yr. As a general rule, fast ridges have spreading (opening) rates of more than 90 mm/year. Intermediate ridges have a spreading rate of 40–90 mm/year while slow spreading ridges have a rate less than 40 mm/year. The spreading rate of the North Atlantic Ocean is ~ 25 mm/yr, while in the Pacific region, it is 80–120 mm/yr. Ridges that spread at rates <20 mm/yr are referred to as ultraslow spreading ridges (e.g., the Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge) and they provide a much different perspective on crustal formation than their faster spreading brethren.

[ "Ridge", "Mantle (geology)", "Basalt", "Loki's Castle", "Vine–Matthews–Morley hypothesis", "Ridge push", "Kane Fracture Zone", "Limu o Pele" ]
Parent Topic
Child Topic
    No Parent Topic