language-icon Old Web
English
Sign In

Alkalinity

Alkalinity (from Arabic 'al-qalī') is the capacity of water to resist changes in pH that would make the water more acidic. (It should not be confused with basicity which is an absolute measurement on the pH scale.) Alkalinity is the strength of a buffer solution composed of weak acids and their conjugate bases. It is measured by titrating the solution with a monoprotic acid such as HCl until its pH changes abruptly, or it reaches a known endpoint where that happens. Alkalinity is expressed in units of meq/L (milliequivalents per liter), which corresponds to the amount of monoprotic acid added as a titrant in millimoles per liter. Alkalinity (from Arabic 'al-qalī') is the capacity of water to resist changes in pH that would make the water more acidic. (It should not be confused with basicity which is an absolute measurement on the pH scale.) Alkalinity is the strength of a buffer solution composed of weak acids and their conjugate bases. It is measured by titrating the solution with a monoprotic acid such as HCl until its pH changes abruptly, or it reaches a known endpoint where that happens. Alkalinity is expressed in units of meq/L (milliequivalents per liter), which corresponds to the amount of monoprotic acid added as a titrant in millimoles per liter. Although alkalinity is primarily a term invented by oceanographers, it is also used by hydrologists to describe temporary hardness. Moreover, measuring alkalinity is important in determining a stream's ability to neutralize acidic pollution from rainfall or wastewater. It is one of the best measures of the sensitivity of the stream to acid inputs. There can be long-term changes in the alkalinity of streams and rivers in response to human disturbances. In 1884, Professor Wilhelm (William) Dittmar of Anderson College, now the University of Strathclyde, analysed 77 pristine seawater samples from around the world brought back by the Challenger expedition. He found that in seawater the major ions were in a fixed ratio, confirming the hypothesis of Johan Georg Forchhammer, that is now known as the Principle of Constant Proportions. However, there was one exception. Dittmar found that the concentration of calcium was slightly greater in the deep ocean, and named this increase alkalinity. 1884 was also the year when Svante Arrhenius submitted his PhD theses in which he advocated the existence of ions in solution, and defined acids as hydronium ion donors and bases as hydroxide ions donors. For that work, he received the Nobel Prize in Chemistry in 1903. Thus Dittmar's alkalinity is the hydronium cations which exist to balance electrically the increase in calcium anions in deep ocean water, although now the meaning alkalinity has expanded. Alkalinity roughly refers to the amount of bases in a solution that can be converted to uncharged species by a strong acid. The cited author, James Drever, provides an equation expressed in terms of molar equivalents, which means the number of moles of each ion type multiplied by (the absolute value of) the charge of the ion. For example, 1 mole of HCO31− in solution represents 1 molar equivalent, while 1 mole of CO32− is 2 molar equivalents because twice as many H+ ions would be necessary to balance the charge. The total charge of a solution always equals zero. Quoting from page 52, 'Ions such as Na+, K+, Ca2+, Mg2+, Cl −, SO42−, and NO3− can be regarded as 'conservative' in the sense that their concentrations are unaffected by changes in the pH, pressure, or temperature (within the ranges normally encountered near the earth's surface and assuming no precipitation or dissolution of solid phases, or biological transformations).' On the left-hand side of the equation is the sum of conservative cations minus the sum of conservative anions. Balancing this on the right side is the sum of the anions that could be neutralized by added H+ ions (non-conservative anions) minus H+ ions already present, as indicated by the pH. All numbers are molar equivalents. This right side term is called total alkalinity. It is, quoting Drever, 'formally defined as the equivalent sum of the bases that are titratable with strong acid (Stumm and Morgan, 1981)'. The listing of ions shown on the right in Drever was 'mHCO3− + 2mCO32− + mB(OH)4− + mH3(SiO)4− + mHS− + morganic anions + mOH− - mH+'. Total alkalinity is measured by adding a strong acid until all the anions listed above are converted to uncharged species. The total alkalinity is not (much) affected by temperature, pressure, or pH, though the values of individual constituents are, mostly being conversions between HCO3− and CO32−.

[ "Environmental engineering", "Environmental chemistry", "Physical chemistry", "Organic chemistry", "Inorganic chemistry", "Acid neutralizing capacity", "Carbonate hardness", "Global Ocean Data Analysis Project", "Acidity/alkalinity", "Alcolapia grahami" ]
Parent Topic
Child Topic
    No Parent Topic