language-icon Old Web
English
Sign In

RuBisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations Rubisco, rubisco, RuBPCase, or RuBPco, is an enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-bisphosphate (also known as RuBP). It is probably the most abundant enzyme on Earth. Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations Rubisco, rubisco, RuBPCase, or RuBPco, is an enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-bisphosphate (also known as RuBP). It is probably the most abundant enzyme on Earth. RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere. While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation than that catalyzed by RuBisCO. Phosphoenolpyruvate carboxylase, unlike RuBisCO, only temporarily fixes carbon. Reflecting its importance, RuBisCO is the most abundant protein in leaves, accounting for 50% of soluble leaf protein in C3 plants (20–30% of total leaf nitrogen) and 30% of soluble leaf protein in C4 plants (5–9% of total leaf nitrogen). Given its important role in the biosphere, the genetic engineering of RuBisCO in crops is of continuing interest (see below). In plants, algae, cyanobacteria, and phototrophic and chemoautotrophic proteobacteria, the enzyme usually consists of two types of protein subunit, called the large chain (L, about 55,000 Da) and the small chain (S, about 13,000 Da). The large-chain gene (rbcL) is encoded by the chloroplast DNA in plants. There are typically several related small-chain genes in the nucleus of plant cells, and the small chains are imported to the stromal compartment of chloroplasts from the cytosol by crossing the outer chloroplast membrane. The enzymatically active substrate (ribulose 1,5-bisphosphate) binding sites are located in the large chains that form dimers in which amino acids from each large chain contribute to the binding sites. A total of eight large-chains (= 4 dimers) and eight small chains assemble into a larger complex of about 540,000 Da. In some proteobacteria and dinoflagellates, enzymes consisting of only large subunits have been found. Magnesium ions (Mg2+) are needed for enzymatic activity. Correct positioning of Mg2+ in the active site of the enzyme involves addition of an 'activating' carbon dioxide molecule (CO2) to a lysine in the active site (forming a carbamate). Mg2+ operates by driving deprotonation of the Lys210 residue, causing the Lys residue to rotate by 120 degrees to the trans conformer, decreasing the distance between the nitrogen of Lys and the carbon of CO2. The close proximity allows for the formation of a covalent bond, resulting in the carbamate. Mg2+ is first enabled to bind to the active site by the rotation of His335 to an alternate conformation. Mg2+ is then coordinated by the His residues of the active site (His300, His302, His335), and is partially neutralized by the coordination of three water molecules and their conversion to −OH. This coordination results in an unstable complex, but produces a favorable environment for the binding of Mg2+. Formation of the carbamate is favored by an alkaline pH. The pH and the concentration of magnesium ions in the fluid compartment (in plants, the stroma of the chloroplast) increases in the light. The role of changing pH and magnesium ion levels in the regulation of RuBisCO enzyme activity is discussed below. Once the carbamate is formed, His335 finalizes the activation by returning to its initial position through thermal fluctuation. RuBisCO is one of many enzymes in the Calvin cycle. When Rubisco facilitates the attack of CO2 at the C2 carbon of RuBP and subsequent bond cleavage between the C3 and C2 carbon, 2 molecules of glycerate-3-phosphate are formed. The conversion involves these steps: enolisation, carboxylation, hydration, C-C bond cleavage, and protonation. Substrates for RuBisCO are ribulose-1,5-bisphosphate and carbon dioxide (distinct from the 'activating' carbon dioxide). RuBisCO also catalyses a reaction of ribulose-1,5-bisphosphate and molecular oxygen (O2) instead of carbon dioxide (CO2).Discriminating between the substrates CO2 and O2 is attributed to the differing interactions of the substrate's quadrupole moments and a high electrostatic field gradient. This gradient is established by the dimer form of the minimally active RuBisCO, which with its two components provides a combination of oppositely charged domains required for the enzyme's interaction with O2 and CO2. These conditions help explain the low turnover rate found in RuBisCO: In order to increase the strength of the electric field necessary for sufficient interaction with the substrates’ quadrupole moments, the C- and N- terminal segments of the enzyme must be closed off, allowing the active site to be isolated from the solvent and lowering the dielectric constant. This isolation has a significant entropic cost, and results in the poor turnover rate. Carbamylation of the ε-amino group of Lys201 is stabilized by coordination with the Mg2+. This reaction involves binding of the carboxylate termini of Asp203 and Glu204 to the Mg2+ ion. The substrate RuBP binds Mg2+ displacing two of the three aquo ligands. Enolisation of RuBP is the conversion of the keto tautomer of RuBP to an enediol(ate). Enolisation is initiated by deprotonation at C3. The enzyme base in this step has been debated , but the steric constraints observed in crystal structures have made Lys201 the most likely candidate. Specifically, the carbamate oxygen on Lys201 that is not coordinated with the Mg ion deprotonates the C3 carbon of RuBP to form a 2,3-enediolate. Carboxylation of the 2,3-enediolate results in the intermediate 3-keto-2′-carboxyarabinitol-1,5-bisphosphate and Lys334 is positioned to facilitate the addition of the CO2 substrate as it replaces the third Mg2+-coordinated water molecule and add directly to the enediol. No Michaelis complex is formed in this process. Hydration of this ketone results in an additional hydroxy group on C3, forming a gem-diol intermediate. Carboxylation and hydration have been proposed as either a single concerted step or as two sequential steps. Concerted mechanism is supported by the proximity of the water molecule to C3 of RuBP in multiple crystal structures. Within the spinach structure, other residues are well placed to aid in the hydration step as they are within hydrogen bonding distance of the water molecule.

[ "Gene", "Enzyme", "Photosynthesis", "Ribulose-Bisphosphate Carboxylase Large Subunit", "Lathraea clandestina", "Hydrogenovibrio marinus", "Carboxysome", "Ribulose" ]
Parent Topic
Child Topic
    No Parent Topic