language-icon Old Web
English
Sign In

Diesel exhaust

Diesel exhaust is the gaseous exhaust produced by a diesel type of internal combustion engine, plus any contained particulates. Its composition may vary with the fuel type or rate of consumption, or speed of engine operation (e.g., idling or at speed or under load), and whether the engine is in an on-road vehicle, farm vehicle, locomotive, marine vessel, or stationary generator or other application. Diesel exhaust is the gaseous exhaust produced by a diesel type of internal combustion engine, plus any contained particulates. Its composition may vary with the fuel type or rate of consumption, or speed of engine operation (e.g., idling or at speed or under load), and whether the engine is in an on-road vehicle, farm vehicle, locomotive, marine vessel, or stationary generator or other application. Diesel exhaust is a Group 1 carcinogen, which causes lung cancer and has a positive association with bladder cancer. It contains several substances that are also listed individually as human carcinogens by the IARC. Methods exist to reduce nitrogen oxides (NOx) and particulate matter (PM) in the exhaust. The primary products of petroleum fuel combustion in air are carbon dioxide, water, and nitrogen. The other components exist primarily from incomplete combustion and pyrosynthesis.While the distribution of the individual components of raw (untreated) diesel exhaust varies depending on factors like load, engine type, etc., the adjacent table shows a typical composition. The physical and chemical conditions that exist inside any such diesel engines under any conditions differ considerably from spark-ignition engines, because, by design, diesel engine power is directly controlled by the fuel supply, not by control of the air/fuel mixture, as in conventional gasoline engines. As a result of these differences, diesel engines generally produce a different array of pollutants than spark-driven engines, differences that are sometimes qualitative (what pollutants are there, and what are not), but more often quantitative (how much of particular pollutants or pollutant classes are present in each). For instance, diesel engines produce one-twenty-eighth the carbon monoxide that gasoline engines do, as they burn their fuel in excess air even at full load. However, the lean-burning nature of diesel engines and the high temperatures and pressures of the combustion process result in significant production of gaseous nitrogen oxides (NOx), an air pollutant that constitutes a unique challenge with regard to their reduction. While total nitrogen oxides from petrol cars have decreased by around 96% through adoption of exhaust catalytic converters as of 2012, diesel cars still produce nitrogen oxides at a similar level to those bought 15 years earlier under real-world tests; hence, diesel cars emit around 20 times more nitrogen oxides than petrol cars. Modern on-road diesel engines typically use selective catalytic reduction (SCR) systems to meet emissions laws, as other methods such as exhaust gas recirculation (EGR) cannot adequately reduce NOx to meet the newer standards applicable in many jurisdictions. Auxiliary diesel systems designed to remediate the nitrogen oxide pollutants are described in a separate section below. Moreover, the fine particles (fine particulate matter) in diesel exhaust (e.g., soot, sometimes visible as opaque dark-colored smoke) has traditionally been of greater concern, as it presents different health concerns and is rarely produced in significant quantities by spark-ignition engines. These especially harmful particulate contaminants are at their peak when such engines are run without sufficient oxygen to fully combust the fuel; when a diesel engine runs at idle, enough oxygen is usually present to burn the fuel completely. (The oxygen requirement in non-idling engines is usually mitigated using turbocharging.). From the particle emission standpoint, exhaust from diesel vehicles has been reported to be significantly more harmful than those from petrol vehicles. Diesel exhausts, long known for their characteristic smells, changed significantly with the reduction of sulfur content of diesel fuel, and again when catalytic converters were introduced in exhaust systems. Even so, diesel exhausts continue to contain an array of inorganic and organic pollutants, in various classes, and in varying concentrations (see below), depending on fuel composition and engine running conditions. The following are classes of chemical compounds that have been found in diesel exhaust.

[ "Particulates", "Combustion", "Diesel fuel", "Internal combustion engine", "Diesel engine", "JP-8", "Gasoline exhaust", "Diesel Exhaust Particulate", "Diesel exhaust fluid", "3-Nitrobenzanthrone" ]
Parent Topic
Child Topic
    No Parent Topic