language-icon Old Web
English
Sign In

Adiabatic flame temperature

In the study of combustion, there are two types of adiabatic flame temperature depending on how the process is completed: the constant volume and constant pressure; both of which describe temperature that combustion products theoretically can reach if no energy is lost to the outside environment. In the study of combustion, there are two types of adiabatic flame temperature depending on how the process is completed: the constant volume and constant pressure; both of which describe temperature that combustion products theoretically can reach if no energy is lost to the outside environment. The constant volume adiabatic flame temperature is the temperature that results from a complete combustion process that occurs without any work, heat transfer or changes in kinetic or potential energy. Its temperature is higher than the constant pressure process because no energy is utilized to change the volume of the system (i.e., generate work). In daily life, the vast majority of flames one encounters are those caused by rapid oxidation of hydrocarbons in materials such as wood, wax, fat, plastics, propane, and gasoline. The constant-pressure adiabatic flame temperature of such substances in air is in a relatively narrow range around 1950 °C. This is because, in terms of stoichiometry, the combustion of an organic compound with n carbons involves breaking roughly 2n C–H bonds, n C–C bonds, and 1.5n O2 bonds to form roughly n CO2 molecules and n H2O molecules.

[ "Combustor", "Thin filament pyrometry" ]
Parent Topic
Child Topic
    No Parent Topic