language-icon Old Web
English
Sign In

Electronic density

In quantum mechanics, and in particular quantum chemistry, the electronic density is a measure of the probability of an electron occupying an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ(r) or n(r). The density is determined, through definition, by the normalized N-electron wavefunction which itself depends upon 4N variables (3N spatial and N spin coordinates). Conversely, the density determines the wave function modulo a phase factor, providing the formal foundation of density functional theory. In quantum mechanics, and in particular quantum chemistry, the electronic density is a measure of the probability of an electron occupying an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ(r) or n(r). The density is determined, through definition, by the normalized N-electron wavefunction which itself depends upon 4N variables (3N spatial and N spin coordinates). Conversely, the density determines the wave function modulo a phase factor, providing the formal foundation of density functional theory. The electronic density corresponding to a normalized N-electron wavefunction (with r and s denoting spatial and spin variables respectively) is defined as

[ "Electron density", "Density functional theory", "Runge–Gross theorem", "Intracule" ]
Parent Topic
Child Topic
    No Parent Topic