language-icon Old Web
English
Sign In

Mass flux

In physics and engineering, mass flux is the rate of mass flow per unit area, perfectly overlapping with the momentum density, the momentum per unit volume. The common symbols are j, J, q, Q, φ, or Φ (Greek lower or capital Phi), sometimes with subscript m to indicate mass is the flowing quantity. Its SI units are kg s−1 m−2. Mass flux can also refer to an alternate form of flux in Fick's law that includes the molecular mass, or in Darcy's law that includes the mass density. In physics and engineering, mass flux is the rate of mass flow per unit area, perfectly overlapping with the momentum density, the momentum per unit volume. The common symbols are j, J, q, Q, φ, or Φ (Greek lower or capital Phi), sometimes with subscript m to indicate mass is the flowing quantity. Its SI units are kg s−1 m−2. Mass flux can also refer to an alternate form of flux in Fick's law that includes the molecular mass, or in Darcy's law that includes the mass density. Unfortunately, sometimes the defining equation for mass flux in this article is used interchangeably with the defining equation in mass flow rate. For example, Fluid Mechanics, Schaum's et al uses the definition of mass flux as the equation in the mass flow rate article. Mathematically, mass flux is defined as the limit:

[ "Heat transfer", "Flow (psychology)", "Mechanics", "Quantum mechanics", "Thermodynamics", "Vapor quality", "evaporation heat transfer", "R-410A", "Mass concentration difference" ]
Parent Topic
Child Topic
    No Parent Topic