language-icon Old Web
English
Sign In

Candidate gene

The candidate gene approach to conducting genetic association studies focuses on associations between genetic variation within pre-specified genes of interest and phenotypes or disease states. This is in contrast to genome-wide association studies (GWAS), which scan the entire genome for common genetic variation. Candidate genes are most often selected for study based on a priori knowledge of the gene's biological functional impact on the trait or disease in question. The rationale behind focusing on allelic variation in specific, biologically relevant regions of the genome is that certain mutations will directly impact the function of the gene in question, and lead to the phenotype or disease state being investigated. This approach usually uses the case-control study design to try to answer the question, 'Is one allele of a candidate gene more frequently seen in subjects with the disease than in subjects without the disease?' Candidate genes hypothesized to be associated with complex traits have generally not been replicated by subsequent GWASs. The failure of candidate gene studies to shed light on the specific genes underlying such traits has been ascribed to insufficient statistical power. The candidate gene approach to conducting genetic association studies focuses on associations between genetic variation within pre-specified genes of interest and phenotypes or disease states. This is in contrast to genome-wide association studies (GWAS), which scan the entire genome for common genetic variation. Candidate genes are most often selected for study based on a priori knowledge of the gene's biological functional impact on the trait or disease in question. The rationale behind focusing on allelic variation in specific, biologically relevant regions of the genome is that certain mutations will directly impact the function of the gene in question, and lead to the phenotype or disease state being investigated. This approach usually uses the case-control study design to try to answer the question, 'Is one allele of a candidate gene more frequently seen in subjects with the disease than in subjects without the disease?' Candidate genes hypothesized to be associated with complex traits have generally not been replicated by subsequent GWASs. The failure of candidate gene studies to shed light on the specific genes underlying such traits has been ascribed to insufficient statistical power. Suitable candidate genes are generally selected based on known biological, physiological, or functional relevance to the disease in question. This approach is limited by its reliance on existing knowledge about known or theoretical biology of disease. However, more recently developed molecular tools are allowing insight into disease mechanisms and pinpointing potential regions of interest in the genome. Genome-wide association studies and quantitative trait locus (QTL) mapping examine common variation across the entire genome, and as such can detect a new region of interest that is in or near a potential candidate gene. Microarray data allow researchers to examine differential gene expression between cases and controls, and can help pinpoint new potential genes of interest. The great variability between organisms can sometimes make it difficult to distinguish normal variation in SNP from a candidate gene from disease-associated variation. In analyzing large amounts of data, there are several other factors that can help lead to the most probable variant. These factors include priorities in SNPs, relative risk of functional change in genes, and linkage disequilibrium among SNPs. In addition, the availability of genetic information through online databases enables researchers to mine existing data and web-based resources for new candidate gene targets. Many online databases are available to research genes across species. Before the candidate-gene approach was fully developed, various other methods were used to identify genes linked to disease-states. These methods studied genetic linkage and positional cloning through the use of a genetic screen, and were effective at identifying relative risk genes in Mendelian diseases. However, these methods are not as beneficial when studying complex diseases for several reasons: Despite the drawbacks of linkage analysis studies, they are nevertheless useful in preliminary studies to isolate genes linked to disease. A study of candidate genes seeks to balance the use of data while attempting to minimize the chance of creating false positive or negative results. Because this balance can often be difficult, there are several criticisms of the candidate gene approach that are important to understand before beginning such a study. For instance, the candidate-gene approach has been shown to produce a high rate of false positives, which requires that the findings of single genetic associations be treated with great caution.. One critique is that findings of association within candidate-gene studies have not been easily replicated in follow up studies.For instance, a recent investigation on 18 well-studied candidate genes for depression (10 publications or more each) failed to identify any significant association with depression, despite using samples orders of magnitude larger than those from the original publications. In addition to statistical issues (e.g. underpowered studies), population stratification has often been blamed for this inconsistency; therefore caution must also be taken in regards to what criteria define a certain phenotype, as well as other variations in design study. Additionally, because these studies incorporate a priori knowledge, some critics argue that our knowledge is not sufficient to make predictions from. Therefore, results gained from these 'hypothesis-driven' approaches are dependent on the ability to select plausible candidates from the genome, rather than use an anonymous approach. The limited knowledge of complex disease can result in 'information bottleneck', which can be overcome by comparative genomics across different species. This bias can also be overcome by carefully choosing genes based on what factors are most likely to be involved in phenotype.

[ "Gene", "DISC2", "gene prioritization", "DCDC2", "LRRN3", "DYX1C1 GENE" ]
Parent Topic
Child Topic
    No Parent Topic