language-icon Old Web
English
Sign In

Macromolecular docking

Macromolecular docking is the computational modelling of the quaternary structure of complexes formed by two or more interacting biological macromolecules. Protein–protein complexes are the most commonly attempted targets of such modelling, followed by protein–nucleic acid complexes. Macromolecular docking is the computational modelling of the quaternary structure of complexes formed by two or more interacting biological macromolecules. Protein–protein complexes are the most commonly attempted targets of such modelling, followed by protein–nucleic acid complexes. The ultimate goal of docking is the prediction of the three-dimensional structure of the macromolecular complex of interest as it would occur in a living organism. Docking itself only produces plausible candidate structures. These candidates must be ranked using methods such as scoring functions to identify structures that are most likely to occur in nature. The term 'docking' originated in the late 1970s, with a more restricted meaning; then, 'docking' meant refining a model of a complex structure by optimizing the separation between the interactors but keeping their relative orientations fixed. Later, the relative orientations of the interacting partners in the modelling was allowed to vary, but the internal geometry of each of the partners was held fixed. This type of modelling is sometimes referred to as 'rigid docking'. With further increases in computational power, it became possible to model changes in internal geometry of the interacting partners that may occur when a complex is formed. This type of modelling is referred to as 'flexible docking'. The biological roles of most proteins, as characterized by which other macromolecules they interact with, are known at best incompletely. Even those proteins that participate in a well-studied biological process (e.g., the Krebs cycle) may have unexpected interaction partners or functions which are unrelated to that process. In cases of known protein–protein interactions, other questions arise. Genetic diseases (e.g., cystic fibrosis) are known to be caused by misfolded or mutated proteins, and there is a desire to understand what, if any, anomalous protein–protein interactions a given mutation can cause. In the distant future, proteins may be designed to perform biological functions, and a determination of the potential interactions of such proteins will be essential.

[ "Docking (dog)", "Docking (molecular)", "Fibroblast Growth Factor Receptor Substrate 2", "Critical Assessment of Prediction of Interactions" ]
Parent Topic
Child Topic
    No Parent Topic