language-icon Old Web
English
Sign In

Soot

Soot /sʊt/ is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. It is more properly restricted to the product of the gas-phase combustion process but is commonly extended to include the residual pyrolysed fuel particles such as coal, cenospheres, charred wood, and petroleum coke that may become airborne during pyrolysis and that are more properly identified as cokes or char. Soot /sʊt/ is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. It is more properly restricted to the product of the gas-phase combustion process but is commonly extended to include the residual pyrolysed fuel particles such as coal, cenospheres, charred wood, and petroleum coke that may become airborne during pyrolysis and that are more properly identified as cokes or char. Soot causes various types of cancer and lung disease. Soot as an airborne contaminant in the environment has many different sources, all of which are results of some form of pyrolysis. They include soot from coal burning, internal-combustion engines, power-plant boilers, hog-fuel boilers, ship boilers, central steam-heat boilers, waste incineration, local field burning, house fires, forest fires, fireplaces, and furnaces. These exterior sources also contribute to the indoor environment sources such as smoking of plant matter, cooking, oil lamps, candles, quartz/halogen bulbs with settled dust, fireplaces, exhaust emissions from vehicles, and defective furnaces. Soot in very low concentrations is capable of darkening surfaces or making particle agglomerates, such as those from ventilation systems, appear black. Soot is the primary cause of 'ghosting', the discoloration of walls and ceilings or walls and flooring where they meet. It is generally responsible for the discoloration of the walls above baseboard electric heating units. The formation of soot depends strongly on the fuel composition. The rank ordering of sooting tendency of fuel components is: naphthalenes → benzenes → aliphatics. However, the order of sooting tendencies of the aliphatics (alkanes, alkenes, and alkynes) varies dramatically depending on the flame type. The difference between the sooting tendencies of aliphatics and aromatics is thought to result mainly from the different routes of formation. Aliphatics appear to first form acetylene and polyacetylenes, which is a slow process; aromatics can form soot both by this route and also by a more direct pathway involving ring condensation or polymerization reactions building on the existing aromatic structure. Intergovernmental Panel on Climate Change (IPCC) adopted the description of soot given by Charlson and Heintzenberg (1995) as, “Particles formed during the quenching of gases at the outer edge of flames of organic vapours, consisting predominantly of carbon, with lesser amounts of oxygen and hydrogen present as carboxyl and phenolic groups and exhibiting an imperfect graphitic structure” Formation of soot is a complex process, an evolution of matter in which a number of molecules undergo many chemical and physical reactions within a few milliseconds. Soot is a powder-like form of amorphous carbon. Gas-phase soot contains polycyclic aromatic hydrocarbons (PAHs). The PAHs in soot are known mutagens and are classified as a 'known human carcinogen' by the International Agency for Research on Cancer (IARC). Soot forms during incomplete combustion from precursor molecules such as acetylene. It consists of agglomerated nanoparticles with diameters between 6 and 30 nm. The soot particles can be mixed with metal oxides and with minerals and can be coated with sulfuric acid. Many details of soot formation chemistry remain unanswered and controversial, but there have been a few agreements: Soot, particularly diesel exhaust pollution, accounts for over one quarter of the total hazardous pollution in the air. Among these diesel emission components, particulate matter has been a serious concern for human health due to its direct and broad impact on the respiratory organs. In earlier times, health professionals associated PM10 (diameter < 10 μm) with chronic lung disease, lung cancer, influenza, asthma, and increased mortality rate. However, recent scientific studies suggest that these correlations be more closely linked with fine particles (PM2.5) and ultra-fine particles (PM0.1).

[ "Combustion", "Laser-induced incandescence", "combustion aerosol", "soot deposition", "Naphthalene formation", "candle soot" ]
Parent Topic
Child Topic
    No Parent Topic