language-icon Old Web
English
Sign In

Matrix multiplication

In mathematics, matrix multiplication or matrix product is a binary operation that produces a matrix from two matrices with entries in a field, or, more generally, in a ring or even a semiring. The matrix product is designed for representing the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. In more detail, if A is an n × m matrix and B is an m × p matrix, their matrix product AB is an n × p matrix, in which the m entries across a row of A are multiplied with the m entries down a column of B and summed to produce an entry of AB. When two linear maps are represented by matrices, then the matrix product represents the composition of the two maps. In mathematics, matrix multiplication or matrix product is a binary operation that produces a matrix from two matrices with entries in a field, or, more generally, in a ring or even a semiring. The matrix product is designed for representing the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. In more detail, if A is an n × m matrix and B is an m × p matrix, their matrix product AB is an n × p matrix, in which the m entries across a row of A are multiplied with the m entries down a column of B and summed to produce an entry of AB. When two linear maps are represented by matrices, then the matrix product represents the composition of the two maps. The definition of matrix product requires that the entries belong to a semiring, and does not require multiplication of elements of the semiring to be commutative. In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. Even in the case of matrices over fields, the product is not commutative in general, although it is associative and is distributive over matrix addition. The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product. It follows that the n × n matrices over a ring form a ring, which is noncommutative except if n = 1 and the ground ring is commutative. A square matrix may have a multiplicative inverse, called an inverse matrix. In the common case where the entries belong to a commutative ring r, a matrix has an inverse if and only if its determinant has a multiplicative inverse in r. The determinant of a product of square matrices is the product of the determinants of the factors. The n × n matrices that have an inverse form a group under matrix multiplication, the subgroups of which are called matrix groups. Many classical groups (including all finite groups) are isomorphic to matrix groups; this is the starting point of the theory of group representations. Computing matrix products is a central operation in all computational applications of linear algebra. Its computational complexity is O ( n 3 ) {displaystyle O(n^{3})} (for n × n matrices) for the basic algorithm (this complexity is O ( n 2.373 ) {displaystyle O(n^{2.373})} for the asymptotically fastest known algorithm). This nonlinear complexity means that matrix product is often the critical part of many algorithms. This is enforced by the fact that many operations on matrices, such as matrix inversion, determinant, solving systems of linear equations, have the same complexity. Therefore various algorithms have been devised for computing products of large matrices, taking into account the architecture of computers (see BLAS, for example). This article will use the following notational conventions: matrices are represented by capital letters in bold, e.g. A, vectors in lowercase bold, e.g. a, and entries of vectors and matrices are italic (since they are numbers from a field), e.g. A and a. Index notation is often the clearest way to express definitions, and is used as standard in the literature. The i, j entry of matrix A is indicated by (A)ij, Aij or aij, whereas a numerical label (not matrix entries) on a collection of matrices is subscripted only, e.g. A1, A2, etc. If A is an n × m matrix and B is an m × p matrix, the matrix product C = AB (denoted without multiplication signs or dots) is defined to be the n × p matrix

[ "Matrix (mathematics)", "boolean matrix multiplication", "Matrix chain multiplication", "matrix multiplier", "Cauchy–Binet formula", "Cannon's algorithm" ]
Parent Topic
Child Topic
    No Parent Topic