In radio, multiple-input and multiple-output, or MIMO (/ˈmaɪmoʊ, ˈmiːmoʊ/), is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution (4G LTE). More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification. In radio, multiple-input and multiple-output, or MIMO (/ˈmaɪmoʊ, ˈmiːmoʊ/), is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution (4G LTE). More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification. At one time, in wireless the term 'MIMO' referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, 'MIMO' specifically refers to a practical technique for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting multipath propagation. MIMO is fundamentally different from smart antenna techniques developed to enhance the performance of a single data signal, such as beamforming and diversity. MIMO is often traced back to 1970s research papers concerning multi-channel digital transmission systems and interference (crosstalk) between wire pairs in a cable bundle: AR Kaye and DA George (1970), Branderburg and Wyner (1974), and W. van Etten (1975, 1976). Although these are not examples of exploiting multipath propagation to send multiple information streams, some of the mathematical techniques for dealing with mutual interference proved useful to MIMO development. In the mid-1980s Jack Salz at Bell Laboratories took this research a step further, investigating multi-user systems operating over 'mutually cross-coupled linear networks with additive noise sources' such as time-division multiplexing and dually-polarized radio systems. Methods were developed to improve the performance of cellular radio networks and enable more aggressive frequency reuse in the early 1990s. Space-division multiple access (SDMA) uses directional or smart antennas to communicate on the same frequency with users in different locations within range of the same base station. An SDMA system was proposed by Richard Roy and Björn Ottersten, researchers at ArrayComm, in 1991. Their US patent (No. 5515378 issued in 1996) describes a method for increasing capacity using 'an array of receiving antennas at the base station' with a 'plurality of remote users.' Arogyaswami Paulraj and Thomas Kailath proposed an SDMA-based inverse multiplexing technique in 1993. Their US patent (No. 5,345,599 issued in 1994) described a method of broadcasting at high data rates by splitting a high-rate signal 'into several low-rate signals' to be transmitted from 'spatially separated transmitters' and recovered by the receive antenna array based on differences in 'directions-of-arrival.' Paulraj was awarded the prestigious Marconi Prize in 2014 for 'his pioneering contributions to developing the theory and applications of MIMO antennas. ... His idea for using multiple antennas at both the transmitting and receiving stations – which is at the heart of the current high speed WiFi and 4G mobile systems – has revolutionized high speed wireless.' In an April 1996 paper and subsequent patent, Greg Raleigh proposed that natural multipath propagation can be exploited to transmit multiple, independent information streams using co-located antennas and multi-dimensional signal processing. The paper also identified practical solutions for modulation (MIMO-OFDM), coding, synchronization, and channel estimation. Later that year (September 1996) Gerard J. Foschini submitted a paper that also suggested it is possible to multiply the capacity of a wireless link using what the author described as 'layered space-time architecture.' Greg Raleigh, V. K. Jones, and Michael Pollack founded Clarity Wireless in 1996, and built and field-tested a prototype MIMO system. Cisco Systems acquired Clarity Wireless in 1998. Bell Labs built a laboratory prototype demonstrating its V-BLAST (Vertical-Bell Laboratories Layered Space-Time) technology in 1998. Arogyaswami Paulraj founded Iospan Wireless in late 1998 to develop MIMO-OFDM products. Iospan was acquired by Intel in 2003. V-BLAST was never commercialized, and neither Clarity Wireless nor Iospan Wireless shipped MIMO-OFDM products before being acquired. MIMO technology has been standardized for wireless LANs, 3G mobile phone networks, and 4G mobile phone networks and is now in widespread commercial use. Greg Raleigh and V. K. Jones founded Airgo Networks in 2001 to develop MIMO-OFDM chipsets for wireless LANs. The Institute of Electrical and Electronics Engineers (IEEE) created a task group in late 2003 to develop a wireless LAN standard delivering at least 100 Mbit/s of user data throughput. There were two major competing proposals: TGn Sync was backed by companies including Intel and Philips, and WWiSE was supported by companies including Airgo Networks, Broadcom, and Texas Instruments. Both groups agreed that the 802.11n standard would be based on MIMO-OFDM with 20 MHz and 40 MHz channel options. TGn Sync, WWiSE, and a third proposal (MITMOT, backed by Motorola and Mitsubishi) were merged to create what was called the Joint Proposal. In 2004, Airgo became the first company to ship MIMO-OFDM products. Qualcomm acquired Airgo Networks in late 2006. The final 802.11n standard supported speeds up to 600 Mbit/s (using four simultaneous data streams) and was published in late 2009. Surendra Babu Mandava and Arogyaswami Paulraj founded Beceem Communications in 2004 to produce MIMO-OFDM chipsets for WiMAX. The company was acquired by Broadcom in 2010. WiMAX was developed as an alternative to cellular standards, is based on the 802.16e standard, and uses MIMO-OFDM to deliver speeds up to 138 Mbit/s. The more advanced 802.16m standard enables download speeds up to 1 Gbit/s. A nationwide WiMAX network was built in the United States by Clearwire, a subsidiary of Sprint-Nextel, covering 130 million points of presence (PoP) by mid-2012. Sprint subsequently announced plans to deploy LTE (the cellular 4G standard) covering 31 cities by mid-2013 and to shut down its WiMAX network by the end of 2015.