language-icon Old Web
English
Sign In

Face perception

Face perception is an individual's understanding and interpretation of the face, particularly the human face, especially in relation to the associated information processing in the brain.Other things being equal, individuals of a given race are distinguishable from each other in proportion to our familiarity, to our contact with the race as whole. Thus, to the uninitiated American all Asiatics look alike, while to the Asiatics, all White men look alike. Face perception is an individual's understanding and interpretation of the face, particularly the human face, especially in relation to the associated information processing in the brain. The proportions and expressions of the human face are important to identify origin, emotional tendencies, health qualities, and some social information. From birth, faces are important in the individual's social interaction. Face perceptions are very complex as the recognition of facial expressions involves extensive and diverse areas in the brain. Sometimes, damaged parts of the brain can cause specific impairments in understanding faces or prosopagnosia. From birth, infants possess rudimentary facial processing capacities and show heightened interest in faces. For example, newborns (1–3 days) have been shown to be able to recognize faces even when they are rotated up to 45 degrees. However, interest in faces is not continuously present in infancy and shows increases and decreases over time as the child grows older. Specifically, while newborns show a preference for faces, this behavior is reduced between one- to four months of age. Around three months of age, a preference for faces re-emerges and interest in faces seems to peak late during the first year but then declines again slowly over the next two years of life. The re-emergence of a preference for faces at three months of age may be influenced by the child's own motor abilities and experiences. Infants as young as two days of age are capable of mimicking the facial expressions of an adult, displaying their capacity to note details like mouth and eye shape as well as to move their own muscles in a way that produces similar patterns in their faces. However, despite this ability, newborns are not yet aware of the emotional content encoded within facial expressions. Five-month-olds, when presented with an image of a person making a fearful expression and a person making a happy expression, pay the same amount of attention to and exhibit similar event-related potentials (ERPs) for both. However, when seven-month-olds are given the same treatment, they focus more on the fearful face, and their event-related potential for the scared face shows a stronger initial negative central component than that for the happy face. This result indicates an increased attentional and cognitive focus toward fear that reflects the threat-salient nature of the emotion. In addition, infants' negative central components were not different for new faces that varied in the intensity of an emotional expression but portrayed the same emotion as a face they had been habituated to but were stronger for different-emotion faces, showing that seven-month-olds regarded happy and sad faces as distinct emotive categories. While seven-month-olds have been found to focus more on fearful faces, another study by Jessen, Altvater-Mackensen, and Grossmann found that 'happy expressions elicit enhanced sympathetic arousal in infants' both when facial expressions were presented subliminally and when they were presented supraliminally, or in a way that the infants were consciously aware of the stimulus. These results show that conscious awareness of a stimulus is not connected to an infant's reaction to that stimulus. The recognition of faces is an important neurological mechanism that individuals in society use every day. Jeffrey and Rhodes write that faces 'convey a wealth of information that we use to guide our social interactions'. Emotions play a large role in our social interactions. The perception of a positive or negative emotion on a face affects the way that an individual perceives and processes that face. For example, a face that is perceived to have a negative emotion is processed in a less holistic manner than a face displaying a positive emotion. The ability of face recognition is apparent even in early childhood. The neurological mechanisms responsible for face recognition are present by age five. Research shows that the way children process faces is similar to that of adults, but adults process faces more efficiently. The reason for this may be because of advancements in memory and cognitive functioning that occur with age. Infants are able to comprehend facial expressions as social cues representing the feelings of other people before they are a year old. At seven months, the object of an observed face's apparent emotional reaction is relevant in processing the face. Infants at this age show greater negative central components to angry faces that are looking directly at them than elsewhere, although the direction of fearful faces' gaze produces no difference. In addition, two ERP components in the posterior part of the brain are differently aroused by the two negative expressions tested. These results indicate that infants at this age can at least partially understand the higher level of threat from anger directed at them as compared to anger directed elsewhere. By at least seven months of age, infants are also able to use facial expressions to understand others' behavior. Seven-month-olds will look to facial cues to understand the motives of other people in ambiguous situations, as shown by a study in which they watched an experimenter's face longer if she took a toy from them and maintained a neutral expression than if she made a happy expression. Interest in the social world is increased by interaction with the physical environment. Training three-month-old infants to reach for objects with Velcro-covered 'sticky mitts' increases the amount of attention that they pay to faces as compared to passively moving objects through their hands and non-trained control groups. In following with the notion that seven-month-olds have categorical understandings of emotion, they are also capable of associating emotional prosodies with corresponding facial expressions. When presented with a happy or angry face, shortly followed by an emotionally neutral word read in a happy or angry tone, their ERPs follow different patterns. Happy faces followed by angry vocal tones produce more changes than the other incongruous pairing, while there was no such difference between happy and angry congruous pairings, with the greater reaction implying that infants held greater expectations of a happy vocal tone after seeing a happy face than an angry tone following an angry face. Considering an infant's relative immobility and thus their decreased capacity to elicit negative reactions from their parents, this result implies that experience has a role in building comprehension of facial expressions. Several other studies indicate that early perceptual experience is crucial to the development of capacities characteristic of adult visual perception, including the ability to identify familiar people and to recognize and comprehend facial expressions. The capacity to discern between faces, much like language, appears to have a broad potential in early life that is whittled down to kinds of faces that are experienced in early life. Infants can discern between macaque faces at six months of age, but, without continued exposure, cannot at nine months of age. Being shown photographs of macaques during this three-month period gave nine-month-olds the ability to reliably distinguish between unfamiliar macaque faces. The neural substrates of face perception in infants are likely similar to those of adults, but the limits of imaging technology that are feasible for use with infants currently prevent very specific localization of function as well as specific information from subcortical areas like the amygdala, which is active in the perception of facial expression in adults. In a study on healthy adults, it was shown that faces are likely to be processed, in part, via a retinotectal (subcortical) pathway. However, there is activity near the fusiform gyrus, as well as in occipital areas. when infants are exposed to faces, and it varies depending on factors including facial expression and eye gaze direction.

[ "Perception", "Stimulus (physiology)", "Inferior occipital gyrus", "Prosopamnesia", "Fusiform face area", "facial identity", "Cross-race effect" ]
Parent Topic
Child Topic
    No Parent Topic