language-icon Old Web
English
Sign In

Neutron radiation

Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new isotopes—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an anti-electron-neutrino with a mean lifetime of 887 seconds (about 14 minutes, 47 seconds). Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new isotopes—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an anti-electron-neutrino with a mean lifetime of 887 seconds (about 14 minutes, 47 seconds). Neutrons may be emitted from nuclear fusion or nuclear fission, or from other nuclear reactions such as radioactive decay or particle interactions with cosmic rays or within particle accelerators. Large neutron sources are rare, and usually limited to large-sized devices such as nuclear reactors or particle accelerators, including the Spallation Neutron Source. Neutron radiation was discovered from observing an alpha particle colliding with a beryllium nucleus, which was transformed into a carbon nucleus while emitting a neutron, Be(α, n)C. The combination of an alpha particle emitter and an isotope with a large (α, n) nuclear reaction probability is still a common neutron source. The neutrons in nuclear reactors are generally categorized as slow (thermal) neutrons or fast neutrons depending on their energy. Thermal neutrons are similar in energy distribution (the Maxwell–Boltzmann distribution) to a gas in thermodynamic equilibrium but are easily captured by atomic nuclei and are the primary means by which elements undergo nuclear transmutation. To achieve an effective fission chain reaction, neutrons produced during fission must be captured by fissionable nuclei, which then split, releasing more neutrons. In most fission reactor designs, the nuclear fuel is not sufficiently refined to absorb enough fast neutrons to carry on the chain reaction, due to the lower cross section for higher-energy neutrons, so a neutron moderator must be introduced to slow the fast neutrons down to thermal velocities to permit sufficient absorption. Common neutron moderators include graphite, ordinary (light) water and heavy water. A few reactors (fast neutron reactors) and all nuclear weapons rely on fast neutrons. This requires certain changes in the design and in the required nuclear fuel. The element beryllium is particularly useful due to its ability to act as a neutron reflector or lens. This lets smaller quantities of fissile material be used and is a primary technical development that led to the creation of neutron bombs. Cosmogenic neutrons, neutrons produced from cosmic radiation in the Earth's atmosphere or surface, and those produced in particle accelerators can be significantly higher energy than those encountered in reactors. Most of them activate a nucleus before reaching the ground; a few react with nuclei in the air. The reactions with nitrogen-14 lead to the formation of carbon-14, widely used in radiocarbon dating. Cold, thermal and hot neutron radiation is most commonly used in scattering and diffraction experiments, to assess the properties and the structure of materials in crystallography, condensed matter physics, biology, solid state chemistry, materials science, geology, mineralogy and related sciences. Neutron radiation is also used in Boron Neutron Capture Therapy to treat cancerous tumors due to its highly penetrating and damaging nature to cellular structure. Neutrons can also be used for imaging of industrial parts termed neutron radiography when using film, neutron radioscopy when taking a digital image, such as through image plates, and neutron tomography for three-dimensional images. Neutron imaging is commonly used in the nuclear industry, the space and aerospace industry, as well as the high reliability explosives industry. Neutron radiation is often called indirectly ionizing radiation. It does not ionize atoms in the same way that charged particles such as protons and electrons do (exciting an electron), because neutrons have no charge. However, neutron interactions are largely ionizing, for example when neutron absorption results in gamma emission and the gamma ray (photon) subsequently removes an electron from an atom, or a nucleus recoiling from a neutron interaction is ionized and causes more traditional subsequent ionization in other atoms. Because neutrons are uncharged, they are more penetrating than alpha radiation or beta radiation. In some cases they are more penetrating than gamma radiation, which is impeded in materials of high atomic number. In materials of low atomic number such as hydrogen, a low energy gamma ray may be more penetrating than a high energy neutron. In health physics neutron radiation is a type of radiation hazard. Another, sometimes more severe hazard of neutron radiation, is neutron activation, the ability of neutron radiation to induce radioactivity in most substances it encounters, including the body tissues. This occurs through the capture of neutrons by atomic nuclei, which are transformed to another nuclide, frequently a radionuclide. This process accounts for much of the radioactive material released by the detonation of a nuclear weapon. It is also a problem in nuclear fission and nuclear fusion installations as it gradually renders the equipment radioactive such that eventually it must be replaced and disposed of as low-level radioactive waste.

[ "Neutron", "The Svedberg Laboratory" ]
Parent Topic
Child Topic
    No Parent Topic