language-icon Old Web
English
Sign In

Fibroblast growth factor

The fibroblast growth factors (FGF) are a family of cell signalling proteins that are involved in a wide variety of processes, most notably as crucial elements for normal development. Any irregularities in their function lead to a range of developmental defects. These growth factors generally act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and heparan sulfate, thus some of them are found to be sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and they are released locally upon injury or tissue remodeling. The fibroblast growth factors (FGF) are a family of cell signalling proteins that are involved in a wide variety of processes, most notably as crucial elements for normal development. Any irregularities in their function lead to a range of developmental defects. These growth factors generally act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and heparan sulfate, thus some of them are found to be sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and they are released locally upon injury or tissue remodeling. In humans, 22 members of the FGF family have been identified, all of which are structurally related signaling molecules: The mammalian fibroblast growth factor receptor family has 4 members, FGFR1, FGFR2, FGFR3, and FGFR4. The FGFRs consist of three extracellular immunoglobulin-type domains (D1-D3), a single-span trans-membrane domain and an intracellular split tyrosine kinase domain. FGFs interact with the D2 and D3 domains, with the D3 interactions primarily responsible for ligand-binding specificity (see below). Heparan sulfate binding is mediated through the D3 domain. A short stretch of acidic amino acids located between the D1 and D2 domains has auto-inhibitory functions. This 'acid box' motif interacts with the heparan sulfate binding site to prevent receptor activation in the absence of FGFs. Alternate mRNA splicing gives rise to 'b' and 'c' variants of FGFRs 1, 2 and 3. Through this mechanism seven different signaling FGFR sub-types can be expressed at the cell surface. Each FGFR binds to a specific subset of the FGFs. Similarly most FGFs can bind to several different FGFR subtypes. FGF1 is sometimes referred to as the 'universal ligand' as it is capable of activating all 7 different FGFRs. In contrast, FGF7 (keratinocyte growth factor, KGF) binds only to FGFR2b (KGFR). The signaling complex at the cell surface is believed to be a ternary complex formed between two identical FGF ligands, two identical FGFR subunits, and either one or two heparan sulfate chains. A mitogenic growth factor activity was found in pituitary extracts by Armelin in 1973 and further work by Gospodarowicz as reported in 1974 described a more defined isolation of proteins from cow brain extract which, when tested in a bioassay that caused fibroblasts to proliferate, led these investigators to apply the name 'fibroblast growth factor.' In 1975, they further fractionated the extract using acidic and basic pH and isolated two slightly different forms that were named 'acidic fibroblast growth factor' (FGF1) and 'basic fibroblast growth factor' (FGF2). These proteins had a high degree of amino acid identity but were determined to be distinct proteins. Not long after FGF1 and FGF2 were isolated, another group of investigators isolated a pair of heparin-binding growth factors that they named HBGF-1 and HBGF-2, while a third group isolated a pair of growth factors that caused proliferation of cells in a bioassay containing blood vessel endothelium cells, which they called ECGF1 and ECGF2. These independently discovered proteins were eventually demonstrated to be the same sets of molecules, namely FGF1, HBGF-1 and ECGF-1 were all the same acidic fibroblast growth factor described by Gospodarowicz, et al., while FGF2, HBGF-2, and ECGF-2 were all the same basic fibroblast growth factor. FGFs are multifunctional proteins with a wide variety of effects; they are most commonly mitogens but also have regulatory, morphological, and endocrine effects. They have been alternately referred to as 'pluripotent' growth factors and as 'promiscuous' growth factors due to their multiple actions on multiple cell types. Promiscuous refers to the biochemistry and pharmacology concept of how a variety of molecules can bind to and elicit a response from single receptor. In the case of FGF, four receptor subtypes can be activated by more than twenty different FGF ligands. Thus the functions of FGFs in developmental processes include mesoderm induction, anterior-posterior patterning, limb development, neural induction and neural development, and in mature tissues/systems angiogenesis, keratinocyte organization, and wound healing processes. FGF is critical during normal development of both vertebrates and invertebrates and any irregularities in their function leads to a range of developmental defects.

[ "Internal medicine", "Endocrinology", "Molecular biology", "Diabetes mellitus", "Genetics", "FGF19", "Fibroblast growth factor receptor 1", "fgf receptor activity", "FGF18", "Acidic Fibroblast Growth Factor" ]
Parent Topic
Child Topic
    No Parent Topic