language-icon Old Web
English
Sign In

Atmospheric circulation

Atmospheric circulation is the large-scale movement of air, and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth. Atmospheric circulation is the large-scale movement of air, and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth. The Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant. The smaller scale weather systems – mid-latitude depressions, or tropical convective cells – occur 'randomly', and long-range weather predictions of those cannot be made beyond ten days in practice, or a month in theory (see Chaos theory and Butterfly effect). The Earth's weather is a consequence of its illumination by the Sun, and the laws of thermodynamics. The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy, and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air and in that process, it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the poles, and then to space. The large-scale atmospheric circulation 'cells' shift polewards in warmer periods (for example, interglacials compared to glacials), but remain largely constant as they are, fundamentally, a property of the Earth's size, rotation rate, heating and atmospheric depth, all of which change little. Over very long time periods (hundreds of millions of years), a tectonic uplift can significantly alter their major elements, such as the jet stream, and plate tectonics may shift ocean currents. During the extremely hot climates of the Mesozoic, a third desert belt may have existed at the Equator. The wind belts girdling the planet are organised into three cells in each hemisphere—the Hadley cell, the Ferrel cell, and the polar cell. Those cells exist in both the northern and southern hemispheres. The vast bulk of the atmospheric motion occurs in the Hadley cell. The high pressure systems acting on the Earth's surface are balanced by the low pressure systems elsewhere. As a result, there is a balance of forces acting on the Earth's surface. The horse latitudes are an area of high pressure at about 30° to 35° latitude (north or south) where winds diverge into the adjacent zones of Hadley or Ferrel cells, and which typically have light winds, sunny skies, and little precipitation. The atmospheric circulation pattern that George Hadley described was an attempt to explain the trade winds. The Hadley cell is a closed circulation loop which begins at the equator. There, moist air is warmed by the Earth's surface, decreases in density and rises. A similar air mass rising on the other side of the equator forces those rising air masses to move poleward. The rising air creates a low pressure zone near the equator. As the air moves poleward, it cools, becomes denser, and descends at about the 30th parallel, creating a high-pressure area. The descended air then travels toward the equator along the surface, replacing the air that rose from the equatorial zone, closing the loop of the Hadley cell. The poleward movement of the air in the upper part of the troposphere deviates toward the east, caused by the coriolis acceleration (a manifestation of conservation of angular momentum). At the ground level, however, the movement of the air toward the equator in the lower troposphere deviates toward the west, producing a wind from the east. The winds that flow to the west (from the east, easterly wind) at the ground level in the Hadley cell are called the Trade Winds. Though the Hadley cell is described as located at the equator, in the northern hemisphere it shifts to higher latitudes in June and July and toward lower latitudes in December and January, which is the result of the Sun's heating of the surface. The zone where the greatest heating takes place is called the 'thermal equator'. As the southern hemisphere summer is December to March, the movement of the thermal equator to higher southern latitudes takes place then. The Hadley system provides an example of a thermally direct circulation. The power of the Hadley system, considered as a heat engine, is estimated at 200 terawatts.

[ "Precipitation", "Climatology", "Atmospheric sciences", "Meteorology", "Siberian High", "tropical circulation", "Geopotential height", "Hadley cell", "Subsidence (atmosphere)" ]
Parent Topic
Child Topic
    No Parent Topic