language-icon Old Web
English
Sign In

Animal locomotion

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing (some jellyfish), kiting (spiders), rolling (some beetles and spiders) or riding other animals (phoresis).Bipedal ostrichHexapedal stick-insectOctopedal locomotion by a spiderMulti-legged millipedeCoypu (Rodentia)Frog (Anura)Sperm whales (Cetacea)Gentoo penguin (Aves)Marine iguana (Reptilia)Australian Emperor dragonfly (Insecta)Magpie goose (Aves)Townsend's big-eared bat (Chiroptera) Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing (some jellyfish), kiting (spiders), rolling (some beetles and spiders) or riding other animals (phoresis). Animals move for a variety of reasons, such as to find food, a mate, a suitable microhabitat, or to escape predators. For many animals, the ability to move is essential for survival and, as a result, natural selection has shaped the locomotion methods and mechanisms used by moving organisms. For example, migratory animals that travel vast distances (such as the Arctic tern) typically have a locomotion mechanism that costs very little energy per unit distance, whereas non-migratory animals that must frequently move quickly to escape predators are likely to have energetically costly, but very fast, locomotion. The anatomical structures that animals use for movement, including cilia, legs, wings, arms, fins, or tails are sometimes referred to as locomotory organs or locomotory structures. The term 'locomotion' is formed in English from Latin loco 'from a place' (ablative of locus 'place') + motio 'motion, a moving'. Animals move through, or on, four types of environment: aquatic (in or on water), terrestrial (on ground or other surface, including arboreal, or tree-dwelling), fossorial (underground), and aerial (in the air). Many animals—for example semi-aquatic animals, and diving birds—regularly move through more than one type of medium. In some cases, the surface they move on facilitates their method of locomotion. In water, staying afloat is possible using buoyancy. If an animal's body is less dense than water, it can stay afloat. This requires little energy to maintain a vertical position, but requires more energy for locomotion in the horizontal plane compared to less buoyant animals. The drag encountered in water is much greater than in air. Morphology is therefore important for efficient locomotion, which is in most cases essential for basic functions such as catching prey. A fusiform, torpedo-like body form is seen in many aquatic animals, though the mechanisms they use for locomotion are diverse. The primary means by which fish generate thrust is by oscillating the body from side-to-side, the resulting wave motion ending at a large tail fin. Finer control, such as for slow movements, is often achieved with thrust from pectoral fins (or front limbs in marine mammals). Some fish, e.g. the spotted ratfish (Hydrolagus colliei) and batiform fish (electric rays, sawfishes, guitarfishes, skates and stingrays) use their pectoral fins as the primary means of locomotion, sometimes termed labriform swimming. Marine mammals oscillate their body in an up-and-down (dorso-ventral) direction.Other animals, e.g. penguins, diving ducks, move underwater in a manner which has been termed 'aquatic flying'. Some fish propel themselves without a wave motion of the body, as in the slow-moving seahorses and Gymnotus. Other animals, such as cephalopods, use jet propulsion to travel fast, taking in water then squirting it back out in an explosive burst. Other swimming animals may rely predominantly on their limbs, much as humans do when swimming. Though life on land originated from the seas, terrestrial animals have returned to an aquatic lifestyle on several occasions, such as the fully aquatic cetaceans, now very distinct from their terrestrial ancestors. Dolphins sometimes ride on the bow waves created by boats or surf on naturally breaking waves.

[ "Physiology", "Simulation", "Anatomy", "Paleontology", "Neuroscience" ]
Parent Topic
Child Topic
    No Parent Topic