language-icon Old Web
English
Sign In

Quarkonium

In particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it a neutral particle and the antiparticle of itself. In particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it a neutral particle and the antiparticle of itself. Light quarks (up, down, and strange) are much less massive than the heavier quarks, and so the physical states actually seen in experiments (η, η′, and π0 mesons) are quantum mechanical mixtures of the light quark states. The much larger mass differences between the charm and bottom quarks and the lighter quarks results in states that are well defined in terms of a quark–antiquark pair of a given flavor. Examples of quarkonia are the J/ψ meson (the ground state of charmonium, cc) and the ϒ meson (bottomonium, bb). Because of the high mass of the top quark, toponium does not exist, since the top quark decays through the electroweak interaction before a bound state can form (a rare example of a weak process proceeding more quickly than a strong process). Usually, the word 'quarkonium' refers only to charmonium and bottomonium, and not to any of the lighter quark–antiquark states. In the following table, the same particle can be named with the spectroscopic notation or with its mass. In some cases excitation series are used: Ψ' is the first excitation of Ψ (for historical reasons, this one is called J/ψ particle); Ψ' is a second excitation, and so on. That is, names in the same cell are synonymous. Some of the states are predicted, but have not been identified; others are unconfirmed. The quantum numbers of the X(3872) particle have been measured recently by the LHCb experiment at CERN. This measurement shed some light on its identity, excluding the third option among the three envised, which are : In 2005, the BaBar experiment announced the discovery of a new state: Y(4260). CLEO and Belle have since corroborated these observations. At first, Y(4260) was thought to be a charmonium state, but the evidence suggests more exotic explanations, such as a D 'molecule', a 4-quark construct, or a hybrid meson. Notes:

[ "Quark", "Hadron", "Elementary particle", "Quantum chromodynamics", "Meson" ]
Parent Topic
Child Topic
    No Parent Topic