language-icon Old Web
English
Sign In

Lanthanum

Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air and is soft enough to be cut with a knife. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. It is also sometimes considered the first element of the 6th-period transition metals, which would put it in group 3, although lutetium is sometimes placed in this position instead. Lanthanum is traditionally counted among the rare earth elements. The usual oxidation state is +3. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity. Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air and is soft enough to be cut with a knife. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. It is also sometimes considered the first element of the 6th-period transition metals, which would put it in group 3, although lutetium is sometimes placed in this position instead. Lanthanum is traditionally counted among the rare earth elements. The usual oxidation state is +3. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity. Lanthanum usually occurs together with cerium and the other rare earth elements. Lanthanum was first found by the Swedish chemist Carl Gustav Mosander in 1839 as an impurity in cerium nitrate – hence the name lanthanum, from the Ancient Greek λανθάνειν (lanthanein), meaning 'to lie hidden'. Although it is classified as a rare earth element, lanthanum is the 28th most abundant element in the Earth's crust, almost three times as abundant as lead. In minerals such as monazite and bastnäsite, lanthanum composes about a quarter of the lanthanide content. It is extracted from those minerals by a process of such complexity that pure lanthanum metal was not isolated until 1923. Lanthanum compounds have numerous applications as catalysts, additives in glass, carbon arc lamps for studio lights and projectors, ignition elements in lighters and torches, electron cathodes, scintillators, GTAW electrodes, and other things. Lanthanum carbonate is used as a phosphate binder in cases of renal failure. Lanthanum is the first element and prototype of the lanthanide series. In the periodic table, it appears to the right of the alkaline earth metal barium and to the left of the lanthanide cerium. Lanthanum is often considered to be a group 3 element, along with its lighter congeners scandium and yttrium and its heavier congener, the radioactive actinium, although this classification is sometimes disputed. Similarly to scandium, yttrium, and actinium, the 57 electrons of a lanthanum atom are arranged in the configuration 5d16s2, with three valence electrons outside the noble gas core. In chemical reactions, lanthanum almost always gives up these three valence electrons from the 5d and 6s subshells to form the +3 oxidation state, achieving the stable configuration of the preceding noble gas xenon. Some lanthanum(II) compounds are also known, but they are much less stable. Among the lanthanides, lanthanum is exceptional as it does not have any 4f electrons; indeed, the sudden contraction and lowering of energy of the 4f orbital that is important for the chemistry of the lanthanides only begins to happen at cerium. Thus it is only very weakly paramagnetic, unlike the strongly paramagnetic later lanthanides (with the exceptions of the last two, ytterbium and lutetium, where the 4f shell is completely full). Furthermore, since the melting points of the trivalent lanthanides are related to the extent of hybridisation of the 6s, 5d, and 4f electrons, lanthanum has the second-lowest (after cerium) melting point among all the lanthanides: 920 °C. The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm. Lanthanum is the least volatile of the lanthanides. Like most of the lanthanides, lanthanum has a hexagonal crystal structure at room temperature. At 310 °C, lanthanum changes to a face-centered cubic structure, and at 865 °C, it changes to a body-centered cubic structure. As expected from periodic trends, lanthanum has the largest atomic radius of the lanthanides and the stable group 3 elements. Hence, it is the most reactive among them, tarnishing slowly in air and burning readily to form lanthanum(III) oxide, La2O3, which is almost as basic as calcium oxide. A centimeter-sized sample of lanthanum will corrode completely in a year as its oxide spalls off like iron rust, instead of forming a protective oxide coating like aluminium and lanthanum's lighter congeners scandium and yttrium. Lanthanum reacts with the halogens at room temperature to form the trihalides, and upon warming will form binary compounds with the nonmetals nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic. Lanthanum reacts slowly with water to form lanthanum(III) hydroxide, La(OH)3. In dilute sulfuric acid, lanthanum readily forms the aquated tripositive ion 3+: this is colorless in aqueous solution since La3+ has no f electrons. Lanthanum is the strongest and hardest base among the lanthanides and group 3 elements, which is again expected from its being the largest of them. Naturally occurring lanthanum is made up of two isotopes, the stable 139La and the primordial long-lived radioisotope 138La. 139La is by far the most abundant, making up 99.910% of natural lanthanum: it is produced in the s-process (slow neutron capture, which occurs in low- to medium-mass stars) and the r-process (rapid neutron capture, which occurs in core-collapse supernovae). The very rare isotope 138La is one of the few primordial odd-odd nuclei, with a long half-life of 1.05×1011 years: it is one of the proton-rich p-nuclei which cannot be produced in the s- or r-processes. 138La, along with the even rarer 180mTa, is produced in the ν-process, where neutrinos interact with stable nuclei. All other lanthanum isotopes are synthetic: with the exception of 137La with a half-life of about 60,000 years, all of them have half-lives less than a day, and most have half-lives less than a minute. The isotopes 139La and 140La occur as fission products of uranium. Lanthanum oxide is a white solid that can be prepared by direct reaction of its constituent elements. Due to the large size of the La3+ ion, La2O3 adopts a hexagonal 7-coordinate structure that changes to the 6-coordinate structure of scandium oxide (Sc2O3) and yttrium oxide (Y2O3) at high temperature. When it reacts with water, lanthanum hydroxide is formed: a lot of heat is evolved in the reaction and a hissing sound is heard. Lanthanum hydroxide will react with atmospheric carbon dioxide to form the basic carbonate. Lanthanum fluoride is insoluble in water and can be used as a qualitative test for the presence of La3+. The heavier halides are all very soluble deliquescent compounds. The anhydrous halides are produced by direct reaction of their elements, as heating the hydrates causes hydrolysis: for example, heating hydrated LaCl3 produces LaOCl.

[ "Nuclear chemistry", "Analytical chemistry", "Organic chemistry", "Inorganic chemistry", "Nuclear physics", "Lanthanum(III) chloride", "Lanthanum sulfate", "Lanthanum oxide", "Alizarin fluorine blue", "Lanthanum iron oxide" ]
Parent Topic
Child Topic
    No Parent Topic