language-icon Old Web
English
Sign In

Wetland conservation

Wetland conservation is aimed at protecting and preserving areas where water exists at or near the Earth's surface, such as swamps, marshes and bogs. Wetlands cover at least six per cent of the Earth and have become a focal issue for conservation due to the ecosystem services they provide. More than three billion people, around half the world’s population, obtain their basic water needs from inland freshwater wetlands. The same number of people rely on rice as their staple food, a crop grown largely in natural and artificial wetlands. In some parts of the world, such as the Kilombero wetland in Tanzania, almost the entire local population relies on wetland cultivation for their livelihoods. Wetland conservation is aimed at protecting and preserving areas where water exists at or near the Earth's surface, such as swamps, marshes and bogs. Wetlands cover at least six per cent of the Earth and have become a focal issue for conservation due to the ecosystem services they provide. More than three billion people, around half the world’s population, obtain their basic water needs from inland freshwater wetlands. The same number of people rely on rice as their staple food, a crop grown largely in natural and artificial wetlands. In some parts of the world, such as the Kilombero wetland in Tanzania, almost the entire local population relies on wetland cultivation for their livelihoods. Fisheries are also an extremely important source of protein and income in many wetlands. According to the United Nations Food and Agriculture Organization, the total catch from inland waters (rivers and wetlands) was 8.7 million metric tonnes in 2002. In addition to food, wetlands supply fibre, fuel and medicinal plants. They also provide valuable ecosystems for birds and other aquatic creatures, help reduce the damaging impact of floods, control pollution and regulate the climate. From economic importance, to aesthetics, the reasons for conserving wetlands have become numerous over the past few decades. Various definitions of wetlands exist. The Convention on Wetlands of International Importance, also known as the Ramsar Convention, defines wetlands as including: lakes and rivers, swamps and marshes, wet grasslands and peatlands, oases, estuaries, deltas and tidal flats, near-shore marine areas, mangroves and coral reefs, and human-made sites such as fish ponds, rice paddies, reservoirs, and salt pans. Meanwhile, the United States Environmental Protection Agency (EPA) or Wetlands Reserve Program, describes wetlands as 'those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas.' Wetlands vary widely in their salinity levels, climatic zones, supported flora, surrounding geography, whether they are coastal or inland and so on. The main functions performed by wetlands are: water filtration, water storage, biological productivity, and provide habitat for wildlife. Additional functions and uses of wetlands are described in wetland. Wetlands aid in water filtration by removing excess nutrients, slowing the water allowing particulates to settle out of the water which can then be absorbed into plant roots. Studies have shown that up to 92% of phosphorus and 95% of nitrogen can be removed from passing water through a wetland. Wetlands also let pollutants settle and stick to soil particles, up to 70% of sediments in runoff. Some wetland plants have even been found with accumulations of heavy metals more than 100,000 times that of the surrounding waters' concentration. Without these functions, the waterways would continually increase their nutrient and pollutant load, leading to an isolated deposit of high concentrations further down the line. An example of such a situation is the Mississippi River’s dead zone, an area where nutrient excess has led to large amounts of surface algae, which use up the oxygen and create hypoxic conditions (very low levels of oxygen). Wetlands can even filter out and absorb harmful bacteria from the water. Their complex food chain hosts various microbes and bacteria, which invertebrates feed on. These invertebrates can filter up to 90% of bacteria out of the water this way. Wetlands can store approximately 1-1.5 million gallons of floodwater per acre. When you combine that with the approximate total acres of wetlands in the United States (107.7 million acres), you get an approximate total of 107.7 - 161.6 million million gallons of floodwater US wetlands can store. By storing and slowing water, wetlands allow groundwater to be recharged. 'A 550,000 acre swamp in Florida has been valued at $25 million per year for its role in storing water and recharging the aquifer.' And combining the ability of wetlands to store and slow down water with their ability to filter out sediments, wetlands serve as strong erosion buffers. Through wetlands ability to absorb nutrients, they are able to be highly biologically productive (able to produce biomass quickly). Freshwater wetlands are even comparable to tropical rainforests in plant productivity. Their ability to efficiently create biomass may become important to the development of alternative energy sources. While wetlands only cover around 5% of the Conterminous United States’s land surface, they support 31% of the plant species. They also support, through feeding and nesting, up to ½ of the native North American bird species. Bird populations, while playing a major role in food webs, are also the focus of several, well-funded recreation sports. (Waterfowl hunting and bird watching to name a pair)

[ "Wetland", "Ecosystem" ]
Parent Topic
Child Topic
    No Parent Topic