language-icon Old Web
English
Sign In

Environmental monitoring

Environmental monitoring describes the processes and activities that need to take place to characterise and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment.All monitoring strategies and programmes have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases the results of monitoring will be reviewed, analysed statistically and published. The design of a monitoring programme must therefore have regard to the final use of the data before monitoring starts. Environmental monitoring describes the processes and activities that need to take place to characterise and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment.All monitoring strategies and programmes have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases the results of monitoring will be reviewed, analysed statistically and published. The design of a monitoring programme must therefore have regard to the final use of the data before monitoring starts. Air pollutants are atmospheric substances—both naturally occurring and anthropogenic—which may potentially have a negative impact on the environment and organism health. With the evolution of new chemicals and industrial processes has come the introduction or elevation of pollutants in the atmosphere, as well as environmental research and regulations, increasing the demand for air quality monitoring. Air quality monitoring is challenging to enact as it requires the effective integration of multiple environmental data sources, which often originate from different environmental networks and institutions. These challenges require specialized observation equipment and tools to establish air pollutant concentrations, including sensor networks, geographic information system (GIS) models, and the Sensor Observation Service (SOS), a web service for querying real-time sensor data. Air dispersion models that combine topographic, emissions, and meteorological data to predict air pollutant concentrations are often helpful in interpreting air monitoring data. Additionally, consideration of anemometer data in the area between sources and the monitor often provides insights on the source of the air contaminants recorded by an air pollution monitor. Air quality monitors are operated by citizens, regulatory agencies, and researchers to investigate air quality and the effects of air pollution. Interpretation of ambient air monitoring data often involves a consideration of the spatial and temporal representativeness of the data gathered, and the health effects associated with exposure to the monitored levels. If the interpretation reveals concentrations of multiple chemical compounds, a unique 'chemical fingerprint' of a particular air pollution source may emerge from analysis of the data. Passive or 'diffusive' air sampling depends on meteorological conditions such as wind to diffuse air pollutants to a sorbent medium. Passive samplers have the advantage of typically being small, quiet, and easy to deploy, and they are particularly useful in air quality studies that determine key areas for future continuous monitoring. Air pollution can also be assessed by biomonitoring with organisms that bioaccumulate air pollutants, such as lichens, mosses, fungi, and other biomass. One of the benefits of this type of sampling is how quantitative information can be obtained via measurements of accumulated compounds, representative of the environment from which they came. However, careful considerations must be made in choosing the particular organism, how it's dispersed, and relevance to the pollutant. Other sampling methods include the use of a denuder, needle trap devices, and microextraction techniques. Soil monitoring involves the collection and/or analysis of soil and its associated quality, constituents, and physical status to determine or guarantee its fitness for use. Soil faces many threats, including compaction, contamination, organic material loss, biodiversity loss, slope stability issues, erosion, salinization, and acidification. Soil monitoring helps characterize these and other potential risks to the soil, surrounding environments, animal health, and human health. Assessing these and other risks to soil can be challenging due to a variety of factors, including soil's heterogeneity and complexity, scarcity of toxicity data, lack of understanding of a contaminant's fate, and variability in levels of soil screening. This requires a risk assessment approach and analysis techniques that prioritize environmental protection, risk reduction, and, if necessary, remediation methods. Soil monitoring plays a significant role in that risk assessment, not only aiding in the identification of at-risk and affected areas but also in the establishment of base background values of soil.

[ "Ecology", "Environmental engineering", "Environmental chemistry", "Bathing Beaches", "Environmental specimen", "Environmental Change Network", "Environmental monitoring device", "Water Movements" ]
Parent Topic
Child Topic
    No Parent Topic