language-icon Old Web
English
Sign In

Climate change in Saskatchewan

The effects of climate change in Saskatchewan are now being observed in parts of the province. There is evidence of reduction of biomass in Saskatchewan's boreal forests (as with those of other Canadian prairie provinces) that is linked by researchers to drought-related water stress stemming from global warming, most likely caused by greenhouse gas emissions. While studies, as early as 1988 (Williams, et al., 1988) have shown that climate change will affect agriculture, whether the effects can be mitigated through adaptations of cultivars, or crops, is less clear. Resiliency of ecosystems may decline with large changes in temperature. The provincial government has responded to the threat of climate change by introducing a plan to reduce carbon emissions, 'The Saskatchewan Energy and Climate Change Plan', in June 2007. The effects of climate change in Saskatchewan are now being observed in parts of the province. There is evidence of reduction of biomass in Saskatchewan's boreal forests (as with those of other Canadian prairie provinces) that is linked by researchers to drought-related water stress stemming from global warming, most likely caused by greenhouse gas emissions. While studies, as early as 1988 (Williams, et al., 1988) have shown that climate change will affect agriculture, whether the effects can be mitigated through adaptations of cultivars, or crops, is less clear. Resiliency of ecosystems may decline with large changes in temperature. The provincial government has responded to the threat of climate change by introducing a plan to reduce carbon emissions, 'The Saskatchewan Energy and Climate Change Plan', in June 2007. Although the adaptive capacity of local species cannot be assumed to be nil, the impacts of anthropogenic climate change, or global warming, are likely to be too rapid for evolution to allow local adaptation. Species of special concern are the piping plover and lake sturgeon, because they are currently IUCN redlisted species their life cycle is dependent on current hydrological regimes. The effects of climate change are also expected to affect the majority of Saskatchewans habitat types, and therefore, changes to the entire ecology of the province are expected. Climate change is expected to alter the phenology, or timing of lifecycle events, of species worldwide. Environmental cues such as seasonal shifts in temperature and photoperiod influence processes such as germination, spring growth, breeding or flowering season, seed set, metamorphosis, migration, and senescence. Increasing winter and spring temperatures over the last century, particularly in northern latitudes, have resulted in rapid phenological shifts in many species. The magnitude and direction of these shifts are unpredictable and vary with latitude, topography, and the species in question. As phenological responses have a high degree of phenotypic plasticity, observations of species-specific phenological trends can be used as a sensitive and dynamic indicator of climate change effects on biota. Although little published information is available specifically on phenological responses to climate change in Saskatchewan, these are likely to follow general worldwide and regional trends. One such trend is advanced flowering in early-season plants and delayed flowering in late-season plants, leading to increased risk of reproductive failure due to frost damage from cold snaps. For instance, trembling aspen in Alberta has been shown to have advanced in flowering date by 26 days over the past century. Changes in flowering phenology also have the potential to greatly impact plant-pollinator dynamics. Asynchronies between flower availability and pollinator activity may lead to lower pollination rates and declines in ecologically and economically important insect species. This in turn could impact insectivorous consumers and thus have cascading effects on entire food chains.Other insect species may benefit from warmer temperatures. Increased voltinism and winter survival in many insects has the potential for dramatic population increases in pest species such as foliage-eating Lepidoptera and bark-boring Coleoptera. Alterations in phenology may have important implications for Saskatchewan agriculture, horticulture, forestry, and traditional First Nations plant uses, as well as large-scale cascading effects on communities and ecosystems. More studies are needed, both species-specific and on interactions between species, to better understand potential future responses of Saskatchewan biota to climate change. Programs such as NatureWatch, established in Canada in 1995, encourage citizen-based ecological monitoring as a method of phenological record-keeping. Such long-term monitoring will help us to better anticipate and adapt to these temporal changes and their resulting consequences. Saskatchewan is divided into four different terrestrial ecozones including the taiga shield, boreal shield, boreal plains and prairies. These regions are determined by features such as natural—landforms, soils, water features, vegetation and climate, however with climate change these features are beginning to change. The taiga shield is predicted to change in species composition if global warming continues in the future. The permafrost on the taiga has shifted northward by approximately 150 kilometres in the last 50 years due to warmer, wetter summer conditions, and increased snowfall in the winter. Because of this shift, lichens, which commonly dominate the bogs in this area, have been replaced by vegetation generally found in dry mesic lichen woodlands. It is predicted that if warming of this ecozone continues, the abundance of lichens, which is still currently high, will decrease considerably. Not only is species composition within the taiga shield expected to change in the future, but its boundaries are anticipated to shift northward onto the tundra as well. It is likely that with this northward shift, the way in which forests form will be altered in that they will become shorter and more aggregated. Deformities of individual trees is also likely to be seen due to wind stress from colonizing the open tundra. According to the Intergovernmental Panel on Climate Change (IPCC), the boreal forest is more sensitive to climate change than either temperate or tropical forests and will be most affected by predicted future warming. Projected changes in both temperature and moisture patterns suggest the boreal ecozones will be subjected to changes in both boundaries and natural disturbance regimes. Not only is it predicted that the boreal ecozones boundaries will shift northward with global warming, its range is expected to shrink as well. These changes will likely result in both a loss of biodiversity, and a loss of an economically valuable resource for forestry.

[ "Ecology", "Botany" ]
Parent Topic
Child Topic
    No Parent Topic