language-icon Old Web
English
Sign In

Biomechanics

Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. The word 'biomechanics' (1899) and the related 'biomechanical' (1856) come from the Ancient Greek βίος bios 'life' and μηχανική, mēchanikē 'mechanics', to refer to the study of the mechanical principles of living organisms, particularly their movement and structure. Biological fluid mechanics, or biofluid mechanics, is the study of both gas and liquid fluid flows in or around biological organisms. An often studied liquid biofluids problem is that of blood flow in the human cardiovascular system. Under certain mathematical circumstances, blood flow can be modelled by the Navier–Stokes equations. In vivo whole blood is assumed to be an incompressible Newtonian fluid. However, this assumption fails when considering forward flow within arterioles. At the microscopic scale, the effects of individual red blood cells become significant, and whole blood can no longer be modelled as a continuum. When the diameter of the blood vessel is just slightly larger than the diameter of the red blood cell the Fahraeus–Lindquist effect occurs and there is a decrease in wall shear stress. However, as the diameter of the blood vessel decreases further, the red blood cells have to squeeze through the vessel and often can only pass in single file. In this case, the inverse Fahraeus–Lindquist effect occurs and the wall shear stress increases. An example of a gaseous biofluids problem is that of human respiration. Recently, respiratory systems in insects have been studied for bioinspiration for designing improved microfluidic devices. The main aspects of Contact mechanics and tribology are related to friction, wear and lubrication. When the two surfaces come in contact during motion i.e. rub against each other, friction, wear and lubrication effects are very important to analyze in order to determine the performance of the material. Biotribology is a study of friction, wear and lubrication of biological systems especially human joints such as hips and knees. For example, femoral and tibial components of knee implant routinely rub against each other during daily activity such as walking or stair climbing. If the performance of tibial component needs to be analyzed, the principles of biotribology are used to determine the wear performance of the implant and lubrication effects of synovial fluid. In addition, the theory of contact mechanics also becomes very important for wear analysis. Additional aspects of biotribology can also include analysis of subsurface damage resulting from two surfaces coming in contact during motion, i.e. rubbing against each other, such as in the evaluation of tissue engineered cartilage. Comparative biomechanics is the application of biomechanics to non-human organisms, whether used to gain greater insights into humans (as in physical anthropology) or into the functions, ecology and adaptations of the organisms themselves. Common areas of investigation are Animal locomotion and feeding, as these have strong connections to the organism's fitness and impose high mechanical demands. Animal locomotion, has many manifestations, including running, jumping and flying. Locomotion requires energy to overcome friction, drag, inertia, and gravity, though which factor predominates varies with environment. Comparative biomechanics overlaps strongly with many other fields, including ecology, neurobiology, developmental biology, ethology, and paleontology, to the extent of commonly publishing papers in the journals of these other fields. Comparative biomechanics is often applied in medicine (with regards to common model organisms such as mice and rats) as well as in biomimetics, which looks to nature for solutions to engineering problems. Computational biomechanics is the application of engineering computational tools, such as the Finite element method to study the mechanics of biological systems. Computational models and simulations are used to predict the relationship between parameters that are otherwise challenging to test experimentally, or used to design more relevant experiments reducing the time and costs of experiments. Mechanical modeling using finite element analysis has been used to interpret the experimental observation of plant cell growth to understand how they differentiate, for instance. In medicine, over the past decade, the Finite element method has become an established alternative to in vivo surgical assessment. One of the main advantages of computational biomechanics lies in its ability to determine the endo-anatomical response of an anatomy, without being subject to ethical restrictions. This has led FE modeling to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy (e.g. BioSpine).

[ "Physical therapy", "Anatomy", "Surgery", "Physiology", "Thermodynamics", "Greater pelvis", "arterial biomechanics", "soft tissue biomechanics", "joint reaction force", "biomechanical model" ]
Parent Topic
Child Topic
    No Parent Topic