language-icon Old Web
English
Sign In

Acclimatization

Acclimatization or acclimatisation (also called acclimation or acclimatation) is the process in which an individual organism adjusts to a change in its environment (such as a change in altitude, temperature, humidity, photoperiod, or pH), allowing it to maintain performance across a range of environmental conditions. Acclimatization occurs in a short period of time (hours to weeks), and within the organism's lifetime (compared to adaptation, which is a development that takes place over many generations). This may be a discrete occurrence (for example, when mountaineers acclimate to high altitude over hours or days) or may instead represent part of a periodic cycle, such as a mammal shedding heavy winter fur in favor of a lighter summer coat. Organisms can adjust their morphological, behavioral, physical, and/or biochemical traits in response to changes in their environment. While the capacity to acclimate to novel environments has been well documented in thousands of species, researchers still know very little about how and why organisms acclimate the way that they do. The nouns acclimatization and acclimation (and the corresponding verbs acclimatize and acclimate) are widely regarded as synonymous, both in general vocabulary and in medical vocabulary. It has sometimes been asserted that they should be differentiated by reserving acclimatization for a wild/natural process (e.g., shedding heavy winter fur with natural seasonal change) and reserving acclimation for changes occurring in response to an artificial or controlled situation, such as changes in temperature imposed in an experiment. This assertion is not widely known or followed (as the foregoing citations of 6 major dictionaries show), so writers who intend it must explicitly state that it applies within their usage (for example, 'in the following discussion, X refers strictly to Y') if they expect their intended meaning to be received by their audience. The synonym acclimatation is less commonly encountered, and fewer dictionaries enter it. In order to maintain performance across a range of environmental conditions, there are several strategies organisms use to acclimate. In response to changes in temperature, organisms can change the biochemistry of cell membranes making them more fluid in cold temperatures and less fluid in warm temperatures by increasing the number of membrane proteins. Organisms may also express specific proteins called heat shock proteins that may act as molecular chaperones and help the cell maintain function under periods of extreme stress. It has been shown that organisms which are acclimated to high or low temperatures display relatively high resting levels of heat shock proteins so that when they are exposed to even more extreme temperatures the proteins are readily available. Expression of heat shock proteins and regulation of membrane fluidity are just two of many biochemical methods organisms use to acclimate to novel environments. Organisms are able to change several characteristics relating to their morphology in order to maintain performance in novel environments. For example, birds often increase their organ size to increase their metabolism. This can take the form of an increase in the mass of nutritional organs or heat-producing organs, like the pectorals (with the latter being more consistent across species). While the capacity for acclimatization on has been documented in thousands of species, researchers still know very little about how and why organisms acclimate in the way that they do. Since researchers first began to study acclimation, the overwhelming hypothesis has been that all acclimation serves to enhance the performance of the organism. This idea has come to be known as the beneficial acclimation hypothesis. Despite such widespread support for the beneficial acclimation hypothesis, not all studies show that acclimation always serves to enhance performance (See beneficial acclimation hypothesis). One of the major objections to the beneficial acclimation hypothesis is that it assumes that there are no costs associated with acclimation. However, there are likely to be costs associated with acclimation. These include the cost of sensing the environmental conditions and regulating responses, producing structures required for plasticity (such as the energetic costs in expressing heat shock proteins), and genetic costs (such as linkage of plasticity-related genes with harmful genes).

[ "Ecology", "Genetics", "Biochemistry", "Botany", "Photosynthetic acclimation", "Eurytherm", "Merwilla plumbea", "High altitude acclimation", "Heat acclimation" ]
Parent Topic
Child Topic
    No Parent Topic