language-icon Old Web
English
Sign In

Control unit

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor. The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor. It directs the operation of the other units by providing timing and control signals.Most computer resources are managed by the CU. It directs the flow of data between the CPU and the other devices. John von Neumann included the control unit as part of the von Neumann architecture. In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged since its introduction. The Control unit (CU) is digital circuitry contained within the processor that coordinates the sequence of data movements into, out of, and between a processor's many sub-units. The result of these routed data movements through various digital circuits (sub-units) within the processor produces the manipulated data expected by a software instruction (loaded earlier, likely from memory). It controls (conducts) data flow inside the processor and additionally provides several external control signals to the rest of the computer to further direct data and instructions to/from processor external destinations (i.e. memory). Examples of devices that require a CU are CPUs and graphics processing units (GPUs). The CU receives external instructions or commands which it converts into a sequence of control signals that the CU applies to the data path to implement a sequence of register-transfer level operations. More precisely, the Control Unit (CU) is generally a sizable collection of complex digital circuitry interconnecting and directing the many execution units (i.e. ALU, data buffers, registers) contained within a CPU. The CU is normally the first CPU unit to accept from an externally stored computer program a single instruction (based on the CPU's instruction set). The CU then decodes this individual instruction into several sequential steps (fetching addresses/data from registers/memory, managing execution (), and storing the resulting data back into registers/memory) that controls and coordinates the CPU's inner works to properly manipulate the data. The design of these sequential steps is based on the needs of each instruction and can range in number of steps, the order of execution, and which units are enabled. Thus by only using a program of set instructions in memory, the CU will configure all the CPU's data flows as needed to manipulate the data correctly between instructions. This results in a computer that could run a complete program and require no human intervention to make hardware changes between instructions (as had to be done when using only punch cards for computations before stored programmed computers with CUs were invented). These detailed steps from the CU dictate which of the CPU's interconnecting hardware control signals to enable/disable or which CPU units are selected/de-selected and the unit's proper order of execution as required by the instruction's operation to produce the desired manipulated data. Additionally, the CU's orderly hardware coordination properly sequences these control signals, then configures the many hardware units comprising the CPU, directing how data should also be moved, changed, and stored outside the CPU (i.e. memory) according to the instruction's objective.

[ "Computer hardware", "Electronic engineering", "Operating system", "Electrical engineering", "Parallel computing", "Micro-operation", "system control unit", "communication unit", "Transmission control unit", "Toner refill" ]
Parent Topic
Child Topic
    No Parent Topic