language-icon Old Web
English
Sign In

Tetracycline

Tetracycline, sold under the brand name Sumycin among others, is an antibiotic used to treat a number of infections. This includes acne, cholera, brucellosis, plague, malaria, and syphilis. It is taken by mouth. Tetracycline, sold under the brand name Sumycin among others, is an antibiotic used to treat a number of infections. This includes acne, cholera, brucellosis, plague, malaria, and syphilis. It is taken by mouth. Common side effects include vomiting, diarrhea, rash, and loss of appetite. Other side effects include poor tooth development if used by children less than eight years of age, kidney problems, and sunburning easily. Use during pregnancy may harm the baby. Tetracycline is in the tetracyclines family of medications. It works by blocking the ability of bacteria to make proteins. Tetracycline was patented in 1953 and came into commercial use in 1978. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. Tetracycline is available as a generic medication. The wholesale cost in the developing world is about 0.35 to 1.78 USD for a course of treatment. In the United States a course of treatment typically costs less than 25 USD. Tetracycline was originally made from bacteria of the Streptomyces type. It is first-line therapy for Rocky Mountain spotted fever (Rickettsia), Lyme disease (B. burgdorferi), Q fever (Coxiella), psittacosis, and Mycoplasma pneumoniae and to eradicate nasal carriage of meningococci. Tetracycline tablets were used in the plague outbreak in India in 1994. Tetracyclines have a broad spectrum of antibiotic action. Originally, they possessed some level of bacteriostatic activity against almost all medically relevant aerobic and anaerobic bacterial genera, both Gram-positive and Gram-negative, with a few exceptions, such as Pseudomonas aeruginosa and Proteus spp., which display intrinsic resistance. However, acquired (as opposed to inherent) resistance has proliferated in many pathogenic organisms and greatly eroded the formerly vast versatility of this group of antibiotics. Resistance amongst Staphylococcus spp., Streptococcus spp., Neisseria gonorrhoeae, anaerobes, members of the Enterobacteriaceae, and several other previously sensitive organisms is now quite common. Tetracyclines remain especially useful in the management of infections by certain obligately intracellular bacterial pathogens such as Chlamydia, Mycoplasma, and Rickettsia. They are also of value in spirochaetal infections, such as syphilis, leptospirosis, and Lyme disease. Certain rare or exotic infections, including anthrax, plague and brucellosis, are also susceptible to tetracyclines. These agents also have activity against certain eukaryotic parasites, including those responsible for diseases such as malaria and balantidiasis. The following represents MIC susceptibility data for a few medically significant microorganisms: Bacteria usually acquire resistance to tetracycline from horizontal transfer of a gene that either encodes an efflux pump or a ribosomal protection protein. Efflux pumps actively eject tetracycline from the cell, preventing the buildup of an inhibitory concentration of tetracycline in the cytoplasm. Ribosomal protection proteins interact with the ribosome and dislodge tetracycline from the ribosome, allowing for translation to continue. Use of the tetracycline antibiotics group can: Caution should be exercised in long-term use when breastfeeding. Short-term use is safe; bioavailability in milk is low to nil. According to the U.S. Food and Drug Administration (FDA), cases of Stevens–Johnson syndrome, toxic epidermal necrolysis, and erythema multiforme associated with doxycycline use have been reported, but a causative role has not been established. Since tetracycline is absorbed into bone, it is used as a marker of bone growth for biopsies in humans. Tetracycline labeling is used to determine the amount of bone growth within a certain period of time, usually a period around 21 days. Tetracycline is incorporated into mineralizing bone and can be detected by its fluorescence. In 'double tetracycline labeling', a second dose is given 11–14 days after the first dose, and the amount of bone formed during that interval can be calculated by measuring the distance between the two fluorescent labels.

[ "Antibiotics", "Diabetes mellitus", "Omadacycline", "Rolitetracycline", "4-dedimethylaminotetracycline", "Methacycline", "Sulfafurazole" ]
Parent Topic
Child Topic
    No Parent Topic