language-icon Old Web
English
Sign In

Sanitary sewer

A sanitary sewer or foul sewer is an underground pipe or tunnel system for transporting sewage from houses and commercial buildings (but not stormwater) to treatment facilities or disposal. Sanitary sewers are part of an overall system called a sewage system or sewerage. A sanitary sewer or foul sewer is an underground pipe or tunnel system for transporting sewage from houses and commercial buildings (but not stormwater) to treatment facilities or disposal. Sanitary sewers are part of an overall system called a sewage system or sewerage. Sewage may be treated to control water pollution before discharge to surface waters. Sanitary sewers serving industrial areas also carry industrial wastewater. Separate sanitary sewer systems are designed to transport sewage alone. In municipalities served by sanitary sewers, separate storm drains may convey surface runoff directly to surface waters. Sanitary sewers are distinguished from combined sewers, which combine sewage with stormwater runoff in one pipe. Sanitary sewer systems are beneficial because they avoid combined sewer overflows. Sewage treatment is less effective when sanitary waste is diluted with stormwater, and combined sewer overflows occur when runoff from heavy rainfall or snowmelt exceeds the hydraulic capacity of sewage treatment plants. To overcome these disadvantages, some cities built separate sanitary sewers to collect only municipal wastewater and exclude stormwater runoff collected in separate storm drains. The decision between a combined sewer system or two separate systems is mainly based on need for sewage treatment and cost of providing treatment during heavy rain events. Many cities with combined sewer systems built prior to installing sewage treatment have not replaced those sewer systems. In the developed world, sewers are pipes from buildings to one or more levels of larger underground trunk mains, which transport the sewage to sewage treatment facilities. Vertical pipes, usually made of precast concrete, called manholes, connect the mains to the surface. Depending upon site application and use, these vertical pipes can be cylindrical, eccentric, or concentric. The manholes are used for access to the sewer pipes for inspection and maintenance, and as a means to vent sewer gases. They also facilitate vertical and horizontal angles in otherwise straight pipelines. Pipes conveying sewage from an individual building to a common gravity sewer line are called laterals. Branch sewers typically run under streets receiving laterals from buildings along that street and discharge by gravity into trunk sewers at manholes. Larger cities may have sewers called interceptors, receiving flow from multiple trunk sewers. Design and sizing of sanitary sewers considers the population to be served over the anticipated life of the sewer, per capita wastewater production, and flow peaking from timing of daily routines. Minimum sewer diameters are often specified to prevent blockage by solid materials flushed down toilets; and gradients may be selected to maintain flow velocities generating sufficient turbulence to minimize solids deposition within the sewer. Commercial and industrial wastewater flows are also considered, but diversion of surface runoff to storm drains eliminates wet weather flow peaks of inefficient combined sewers. Pumps may be necessary where gravity sewers serve areas at lower elevations than the sewage treatment plant, or distant areas at similar elevations. A lift station is a sewer sump that lifts accumulated sewage to a higher elevation. The pump may discharge to another gravity sewer at that location or may discharge through a pressurized force main to some distant location. Effluent sewer systems, also called septic tank effluent drainage (STED) or solids-free sewer (SFS) systems, have septic tanks that collect sewage from residences and businesses, and the effluent that comes out of the tank is sent to either a centralized sewage treatment plant or a distributed treatment system for further treatment. Most of the solids are removed by the septic tanks, so the treatment plant can be much smaller than a typical plant. In addition, because of the vast reduction in solid waste, a pumping system can be used to move the wastewater rather than a gravity system. The pipes have small diameters, typically 1.5 to 4 inches (4 to 10 cm). Because the waste stream is pressurized, they can be laid just below the ground surface along the land's contour.

[ "Environmental engineering", "Civil engineering", "Waste management", "Infiltration/Inflow", "Sanitary sewer overflow", "Effluent sewer" ]
Parent Topic
Child Topic
    No Parent Topic