language-icon Old Web
English
Sign In

Network Functions Virtualization

Network functions virtualization (also network function virtualization or NFV) is a network architecture concept that uses the technologies of IT virtualization to virtualize entire classes of network node functions into building blocks that may connect, or chain together, to create communication services. Network functions virtualization (also network function virtualization or NFV) is a network architecture concept that uses the technologies of IT virtualization to virtualize entire classes of network node functions into building blocks that may connect, or chain together, to create communication services. NFV relies upon, but differs from, traditional server-virtualization techniques, such as those used in enterprise IT. A virtualized network function, or VNF, may consist of one or more virtual machines running different software and processes, on top of standard high-volume servers, switches and storage devices, or even cloud computing infrastructure, instead of having custom hardware appliances for each network function. For example, a virtual session border controller could be deployed to protect a network without the typical cost and complexity of obtaining and installing physical network protection units. Other examples of NFV include virtualized load balancers, firewalls, intrusion detection devices and WAN accelerators. Product development within the telecommunication industry has traditionally followed rigorous standards for stability, protocol adherence and quality, reflected by the use of the term carrier grade to designate equipment demonstrating this reliability. While this model worked well in the past, it inevitably led to long product cycles, a slow pace of development and reliance on proprietary or specific hardware, e.g., bespoke application-specific integrated circuits (ASICs). The rise of significant competition in communication services from fast-moving organizations operating at large scale on the public Internet (such as Google Talk, Skype, Netflix) has spurred service providers to look for ways to disrupt the status quo. In October 2012, a specification group, 'Network Functions Virtualisation', published a white paper at a conference in Darmstadt, Germany, on software-defined networking (SDN) and OpenFlow. The group, part of the European Telecommunications Standards Institute (ETSI), was made up of representatives from the telecommunication industry from Europe and beyond. Since the publication of the white paper, the group has produced several more in-depth materials, including a standard terminology definition and use cases for NFV that act as references for vendors and operators considering to adopt Network Virtualization. The NFV framework consists of three main components: The building block for both the NFVI and the NFV-MANO is the NFV platform. In the NFVI role, it consists of both virtual and physical processing and storage resources, and virtualization software. In its NFV-MANO role it consists of VNF and NFVI managers and virtualization software operating on a hardware controller. The NFV platform implements carrier-grade features used to manage and monitor the platform components, recover from failures and provide effective security – all required for the public carrier network. A service provider that follows the NFV design implements one or more virtualized network functions, or VNFs. A VNF by itself does not automatically provide a usable product or service to the provider's customers. To build more complex services, the notion of service chaining is used, where multiple VNFs are used in sequence to deliver a service.

[ "Cloud computing", "Service (systems architecture)" ]
Parent Topic
Child Topic
    No Parent Topic