language-icon Old Web
English
Sign In

Carbon monoxide

Carbon monoxide (CO) is a colorless, odorless, and tasteless flammable gas that is slightly less dense than air. It is toxic to animals that use hemoglobin as an oxygen carrier (both invertebrate and vertebrate) when encountered in concentrations above about 35 ppm, although it is also produced in normal animal metabolism in low quantities, and is thought to have some normal biological functions. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone. Carbon monoxide (CO) is a colorless, odorless, and tasteless flammable gas that is slightly less dense than air. It is toxic to animals that use hemoglobin as an oxygen carrier (both invertebrate and vertebrate) when encountered in concentrations above about 35 ppm, although it is also produced in normal animal metabolism in low quantities, and is thought to have some normal biological functions. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone. Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond. It is the simplest oxocarbon and is isoelectronic with other triply-bonded diatomic molecules having ten valence electrons, including the cyanide anion, the nitrosonium cation and molecular nitrogen. In coordination complexes the carbon monoxide ligand is called carbonyl. Aristotle (384–322 BC) first recorded that burning coals produced toxic fumes. An ancient method of execution was to shut the criminal in a bathing room with smoldering coals. What was not known was the mechanism of death. Greek physician Galen (129–199 AD) speculated that there was a change in the composition of the air that caused harm when inhaled. In 1776, the French chemist de Lassone  produced CO by heating zinc oxide with coke, but mistakenly concluded that the gaseous product was hydrogen, as it burned with a blue flame. The gas was identified as a compound containing carbon and oxygen by the Scottish chemist William Cruikshank in 1800. Its toxic properties on dogs were thoroughly investigated by Claude Bernard around 1846. During World War II, a gas mixture including carbon monoxide was used to keep motor vehicles running in parts of the world where gasoline and diesel fuel were scarce. External (with a few exceptions) charcoal or wood gas generators were fitted, and the mixture of atmospheric nitrogen, hydrogen, carbon monoxide, and small amounts of other gases produced by gasification was piped to a gas mixer. The gas mixture produced by this process is known as wood gas. Carbon monoxide was also used on a large scale during the Holocaust at some Nazi German extermination camps, the most notable by gas vans in Chełmno, and in the Action T4 'euthanasia' program. Carbon monoxide is produced from the partial oxidation of carbon-containing compounds; it forms when there is not enough oxygen to produce carbon dioxide (CO2), such as when operating a stove or an internal combustion engine in an enclosed space. In the presence of oxygen, including atmospheric concentrations, carbon monoxide burns with a blue flame, producing carbon dioxide. Coal gas, which was widely used before the 1960s for domestic lighting, cooking, and heating, had carbon monoxide as a significant fuel constituent. Some processes in modern technology, such as iron smelting, still produce carbon monoxide as a byproduct. A large quantity of CO byproduct is formed during the oxidative processes for the production of chemicals. For this reason, the process off-gases have to be purified. On the other hand, considerable research efforts are made in order to optimize the process conditions, develop catalyst with improved selectivity and to understand the reaction pathways leading to the target product and side products. Worldwide, the largest source of carbon monoxide is natural in origin, due to photochemical reactions in the troposphere that generate about 5×1012 kilograms per year. Other natural sources of CO include volcanoes, forest fires, other forms of combustion, and carbon monoxide-releasing molecules. In biology, carbon monoxide is naturally produced by the action of heme oxygenase 1 and 2 on the heme from hemoglobin breakdown. This process produces a certain amount of carboxyhemoglobin in normal persons, even if they do not breathe any carbon monoxide. Following the first report that carbon monoxide is a normal neurotransmitter in 1993, as well as one of three gases that naturally modulate inflammatory responses in the body (the other two being nitric oxide and hydrogen sulfide), carbon monoxide has received a great deal of clinical attention as a biological regulator. In many tissues, all three gases are known to act as anti-inflammatories, vasodilators, and promoters of neovascular growth. Clinical trials of small amounts of carbon monoxide as a drug are ongoing. Too much carbon monoxide causes carbon monoxide poisoning. Carbon monoxide has a molar mass of 28.0, which, according to the ideal gas law, makes it slightly less dense than air, whose average molar mass is 28.8. The bond length between the carbon atom and the oxygen atom is 112.8 pm. This bond length is consistent with a triple bond, as in molecular nitrogen (N2), which has a similar bond length (109.76 pm) and nearly the same molecular mass. Carbon–oxygen double bonds are significantly longer, 120.8 pm in formaldehyde, for example. The boiling point (82 K) and melting point (68 K) are very similar to those of N2 (77 K and 63 K, respectively). The bond-dissociation energy of 1072 kJ/mol is stronger than that of N2 (942 kJ/mol) and represents the strongest chemical bond known.

[ "Catalysis", "Nitrous acid ester", "AIR/CARBON MONOXIDE", "CO dehydrogenase", "Carbon monoxide lasers", "Tetrairidium dodecacarbonyl" ]
Parent Topic
Child Topic
    No Parent Topic