language-icon Old Web
English
Sign In

Pleural cavity

The pleural cavity also known as the pleural space, is the thin fluid-filled space between the two pulmonary pleurae (known as visceral and parietal) of each lung. A pleura is a serous membrane which folds back onto itself to form a two-layered membranous pleural sac. The outer pleura (parietal pleura) is attached to the chest wall, but is separated from it by the endothoracic fascia. The inner pleura (visceral pleura) covers the lungs and adjoining structures, including blood vessels, bronchi and nerves. The pleural cavity can be viewed as a potential space because the two pleurae adhere to each other (through the thin film of serous fluid) under all normal conditions. Parietal pleura projects up to 2.5 cm above the junction of the middle and medial third of the clavicle The pleural cavity also known as the pleural space, is the thin fluid-filled space between the two pulmonary pleurae (known as visceral and parietal) of each lung. A pleura is a serous membrane which folds back onto itself to form a two-layered membranous pleural sac. The outer pleura (parietal pleura) is attached to the chest wall, but is separated from it by the endothoracic fascia. The inner pleura (visceral pleura) covers the lungs and adjoining structures, including blood vessels, bronchi and nerves. The pleural cavity can be viewed as a potential space because the two pleurae adhere to each other (through the thin film of serous fluid) under all normal conditions. Parietal pleura projects up to 2.5 cm above the junction of the middle and medial third of the clavicle In humans, there is no anatomical connection between the left and right pleural cavities. Therefore, in cases of pneumothorax, the other lung will still function normally unless there is a tension pneumothorax or simultaneous bilateral pneumothorax, which may collapse the contralateral parenchyma, blood vessels and bronchi. The visceral pleura receives its blood supply from the bronchial circulation, which also supplies the lungs. The parietal pleura receives its blood supply from the intercostal arteries, which also supply the overlying body wall. The costal and cervical portions and the periphery of the diaphragmatic portion of the parietal pleurae are innervated by the intercostal nerves. The mediastinal and central portions of the diaphragmatic pleurae are innervated by the phrenic nerves. The visceral pleurae covering the lung itself receive their innervation from the autonomic nervous system and have no sensory innervation. Only the parietal pleurae are sensitive to pain. Initially the intraembryonic coelom is one continuous space. During development this space partitions to form the pericardial, pleural and peritoneal cavities. The diaphragm and the paired pleuropericardial membranes separate the coelomic cavity into four parts. From the splanchnopleura (the visceral mesodermal layer) develops the visceral pleura and from the somatopleura (parietal mesodermal layer) develops the parietal pleura. The pleural cavity, with its associated pleurae, aids optimal functioning of the lungs during breathing. The pleural cavity also contains pleural fluid, which acts as a lubricant and allows the pleurae to slide effortlessly against each other during respiratory movements. Surface tension of the pleural fluid also leads to close apposition of the lung surfaces with the chest wall. This relationship allows for greater inflation of the alveoli during breathing. The pleural cavity transmits movements of the ribs muscles to the lungs, particularly during heavy breathing. During inhalation the external intercostals contract, as does the diaphragm. This causes the expansion of the chest wall, that increases the volume of the lungs. A negative pressure is thus created and inhalation occurs. Pleural fluid is a serous fluid produced by the serous membrane covering normal pleurae. Most fluid is produced by the parietal circulation (intercostal arteries) via bulk flow and reabsorbed by the lymphatic system. Thus, pleural fluid is produced and reabsorbed continuously. In a normal 70 kg human, a few milliliters of pleural fluid is always present within the intrapleural space. Larger quantities of fluid can accumulate in the pleural space only when the rate of production exceeds the rate of reabsorption. Normally, the rate of reabsorption increases as a physiological response to accumulating fluid, with the reabsorption rate increasing up to 40 times the normal rate before significant amounts of fluid accumulate within the pleural space. Thus, a profound increase in the production of pleural fluid—or some blocking of the reabsorbing lymphatic system—is required for fluid to accumulate in the pleural space. A pathologic collection of pleural fluid is called a pleural effusion. Mechanisms:

[ "Lung", "Anatomy", "Surgery", "Composite material", "Fibrin body", "Costal pleura", "Intrapleural route", "Pyothorax-Associated Lymphoma", "Rigid thoracoscope" ]
Parent Topic
Child Topic
    No Parent Topic