language-icon Old Web
English
Sign In

Nanoelectromechanical systems

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the logical next miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Uses include accelerometers, or detectors of chemical substances in the air. Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the logical next miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Uses include accelerometers, or detectors of chemical substances in the air. As noted by Richard Feynman in his famous talk in 1959, 'There's Plenty of Room at the Bottom,' there are many potential applications of machines at smaller and smaller sizes; by building and controlling devices at smaller scales, all technology benefits. Among the expected benefits include greater efficiencies and reduced size, decreased power consumption and lower costs of production in electromechanical systems. In 2000, the first very-large-scale integration (VLSI) NEMS device was demonstrated by researchers at IBM. Its premise was an array of AFM tips which can heat/sense a deformable substrate in order to function as a memory device. Further devices have been described by Stefan de Haan. In 2007, the International Technical Roadmap for Semiconductors (ITRS) contains NEMS Memory as a new entry for the Emerging Research Devices section. A key application of NEMS is atomic force microscope tips. The increased sensitivity achieved by NEMS leads to smaller and more efficient sensors to detect stresses, vibrations, forces at the atomic level, and chemical signals. AFM tips and other detection at the nanoscale rely heavily on NEMS. Two complementary approaches to fabrication of NEMS can be found. The top-down approach uses the traditional microfabrication methods, i.e. optical, electron beam lithography and thermal treatments, to manufacture devices. While being limited by the resolution of these methods, it allows a large degree of control over the resulting structures. In this manner devices such as nanowires, nanorods, and patterned nanostructures are fabricated from metallic thin films or etched semiconductor layers. Bottom-up approaches, in contrast, use the chemical properties of single molecules to cause single-molecule components to self-organize or self-assemble into some useful conformation, or rely on positional assembly. These approaches utilize the concepts of molecular self-assembly and/or molecular recognition. This allows fabrication of much smaller structures, albeit often at the cost of limited control of the fabrication process. A combination of these approaches may also be used, in which nanoscale molecules are integrated into a top-down framework. One such example is the carbon nanotube nanomotor. Many of the commonly used materials for NEMS technology have been carbon based, specifically diamond, carbon nanotubes and graphene. This is mainly because of the useful properties of carbon based materials which directly meet the needs of NEMS. The mechanical properties of carbon (such as large Young's modulus) are fundamental to the stability of NEMS while the metallic and semiconductor conductivities of carbon based materials allow them to function as transistors. Both graphene and diamond exhibit high Young's modulus, low density, low friction, exceedingly low mechanical dissipation, and large surface area. The low friction of CNTs, allow practically frictionless bearings and has thus been a huge motivation towards practical applications of CNTs as constitutive elements in NEMS, such as nanomotors, switches, and high-frequency oscillators. Carbon nanotubes and graphene's physical strength allows carbon based materials to meet higher stress demands, when common materials would normally fail and thus further support their use as a major materials in NEMS technological development.

[ "Nanomedicine", "Nanophotonics", "Nanoelectronics", "Nanocantilever", "National Energy Modeling System", "Nanoelectromechanical relay" ]
Parent Topic
Child Topic
    No Parent Topic