language-icon Old Web
English
Sign In

Carbon monoxide toxicity

Carbon monoxide poisoning typically occurs from breathing in carbon monoxide (CO) at excessive levels. Symptoms are often described as 'flu-like' and commonly include headache, dizziness, weakness, vomiting, chest pain, and confusion. Large exposures can result in loss of consciousness, arrhythmias, seizures, or death. The classically described 'cherry red skin' rarely occurs. Long term complications may include feeling tired, trouble with memory, and movement problems. In those exposed to smoke, cyanide toxicity should also be considered. Carbon monoxide poisoning typically occurs from breathing in carbon monoxide (CO) at excessive levels. Symptoms are often described as 'flu-like' and commonly include headache, dizziness, weakness, vomiting, chest pain, and confusion. Large exposures can result in loss of consciousness, arrhythmias, seizures, or death. The classically described 'cherry red skin' rarely occurs. Long term complications may include feeling tired, trouble with memory, and movement problems. In those exposed to smoke, cyanide toxicity should also be considered. Carbon monoxide poisoning can occur accidentally or as an attempt to end one's life. CO is a colorless and odorless gas which is initially non-irritating. It is produced during incomplete burning of organic matter. This can occur from motor vehicles, heaters, or cooking equipment that run on carbon-based fuels. It can also occur from exposure to methylene chloride. Carbon monoxide primarily causes adverse effects by combining with hemoglobin to form carboxyhemoglobin (HbCO) preventing the blood from carrying oxygen. Additionally, myoglobin and mitochondrial cytochrome oxidase are affected. Diagnosis is based on a HbCO level of more than 3% among nonsmokers and more than 10% among smokers. Efforts to prevent poisoning include carbon monoxide detectors, proper venting of gas appliances, keeping chimneys clean, and keeping exhaust systems of vehicles in good repair. Treatment of poisoning generally consists of giving 100% oxygen along with supportive care. This should generally be carried out until symptoms are no longer present and the HbCO level is less than 10%. While hyperbaric oxygen therapy is used for severe poisonings, the benefit over standard oxygen delivery is unclear. The risk of death among those affected is between 1 and 30%. Carbon monoxide poisoning is relatively common, resulting in more than 20,000 emergency department visits a year in the United States. It is the most common type of fatal poisoning in many countries. In the United States non-fire related cases results in more than 400 deaths a year. Poisonings occur more often in the winter, particularly from the use of portable generators during power outages. The toxic effects of CO have been known since ancient history. The realization that hemoglobin was affected by CO was determined in 1857. Carbon monoxide is not toxic to all forms of life. Its harmful effects are due to binding with hemoglobin so its danger to organisms that do not use this compound is doubtful. It thus has no effect on photosynthesising plants. It is easily absorbed through the lungs. Inhaling the gas can lead to hypoxic injury, nervous system damage, and even death. Different people and populations may have different carbon monoxide tolerance levels. On average, exposures at 100 ppm or greater is dangerous to human health. In the United States, the OSHA limits long-term workplace exposure levels to less than 50 ppm averaged over an 8-hour period; in addition, employees are to be removed from any confined space if an upper limit ('ceiling') of 100 ppm is reached. Carbon monoxide exposure may lead to a significantly shorter life span due to heart damage. The carbon monoxide tolerance level for any person is altered by several factors, including activity level, rate of ventilation, a pre-existing cerebral or cardiovascular disease, cardiac output, anemia, sickle cell disease and other hematological disorders, barometric pressure, and metabolic rate. The main manifestations of carbon monoxide poisoning develop in the organ systems most dependent on oxygen use, the central nervous system and the heart. The initial symptoms of acute carbon monoxide poisoning include headache, nausea, malaise, and fatigue. These symptoms are often mistaken for a virus such as influenza or other illnesses such as food poisoning or gastroenteritis. Headache is the most common symptom of acute carbon monoxide poisoning; it is often described as dull, frontal, and continuous. Increasing exposure produces cardiac abnormalities including fast heart rate, low blood pressure, and cardiac arrhythmia; central nervous system symptoms include delirium, hallucinations, dizziness, unsteady gait, confusion, seizures, central nervous system depression, unconsciousness, respiratory arrest, and death. Less common symptoms of acute carbon monoxide poisoning include myocardial ischemia, atrial fibrillation, pneumonia, pulmonary edema, high blood sugar, lactic acidosis, muscle necrosis, acute kidney failure, skin lesions, and visual and auditory problems. One of the major concerns following acute carbon monoxide poisoning is the severe delayed neurological manifestations that may occur. Problems may include difficulty with higher intellectual functions, short-term memory loss, dementia, amnesia, psychosis, irritability, a strange gait, speech disturbances, Parkinson's disease-like syndromes, cortical blindness, and a depressed mood. Depression may occur in those who did not have pre-existing depression. These delayed neurological sequelae may occur in up to 50% of poisoned people after 2 to 40 days. It is difficult to predict who will develop delayed sequelae; however, advanced age, loss of consciousness while poisoned, and initial neurological abnormalities may increase the chance of developing delayed symptoms. One classic sign of carbon monoxide poisoning is more often seen in the dead rather than the living – people have been described as looking red-cheeked and healthy (see below). However, since this 'cherry-red' appearance is common only in the deceased, and is unusual in living people, it is not considered a useful diagnostic sign in clinical medicine. In pathological (autopsy) examination the ruddy appearance of carbon monoxide poisoning is notable because unembalmed dead persons are normally bluish and pale, whereas dead carbon-monoxide poisoned persons may simply appear unusually lifelike in coloration. The colorant effect of carbon monoxide in such postmortem circumstances is thus analogous to its use as a red colorant in the commercial meat-packing industry. Chronic exposure to relatively low levels of carbon monoxide may cause persistent headaches, lightheadedness, depression, confusion, memory loss, nausea, hearing disorders and vomiting. It is unknown whether low-level chronic exposure may cause permanent neurological damage. Typically, upon removal from exposure to carbon monoxide, symptoms usually resolve themselves, unless there has been an episode of severe acute poisoning. However, one case noted permanent memory loss and learning problems after a 3-year exposure to relatively low levels of carbon monoxide from a faulty furnace. Chronic exposure may worsen cardiovascular symptoms in some people. Chronic carbon monoxide exposure might increase the risk of developing atherosclerosis. Long-term exposures to carbon monoxide present the greatest risk to persons with coronary heart disease and in females who are pregnant. In experimental animals, carbon monoxide appears to worsen noise-induced hearing loss at noise exposure conditions that would have limited effects on hearing otherwise. In humans, hearing loss has been reported following carbon monoxide poisoning. Unlike the findings in animal studies, noise exposure was not a necessary factor for the auditory problems to occur.

[ "Carbon monoxide", "Carbon monoxide poisoning" ]
Parent Topic
Child Topic
    No Parent Topic