language-icon Old Web
English
Sign In

Catalase

1DGB, 1DGF, 1DGG, 1DGH, 1F4J, 1QQW84712359ENSG00000121691ENSMUSG00000027187P04040P24270NM_001752NM_009804NP_001743NP_033934Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals). It catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). Likewise, catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen each second. Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals). It catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). Likewise, catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen each second. Catalase is a tetramer of four polypeptide chains, each over 500 amino acids long. It contains four iron-containing heme groups that allow the enzyme to react with the hydrogen peroxide. The optimum pH for human catalase is approximately 7, and has a fairly broad maximum: the rate of reaction does not change appreciably between pH 6.8 and 7.5. The pH optimum for other catalases varies between 4 and 11 depending on the species. The optimum temperature also varies by species. Human catalase forms a tetramer composed of four subunits, each of which can be conceptually divided into four domains. The extensive core of each subunit is generated by an eight-stranded antiparallel b-barrel (b1-8), with nearest neighbor connectivity capped by b-barrel loops on one side and a9 loops on the other. A helical domain at one face of the b-barrel is composed of four C-terminal helices (a16, a17, a18, and a19) and four helices derived from residues between b4 and b5 (a4, a5, a6, and a7). Alternative splicing may result in different protein variants. Catalase was not noticed until 1818 when Louis Jacques Thénard, who discovered H2O2 (hydrogen peroxide), suggested its breakdown is caused by an unknown substance. In 1900, Oscar Loew was the first to give it the name catalase, and found it in many plants and animals. In 1937 catalase from beef liver was crystallised by James B. Sumner and Alexander Dounce and the molecular weight was found in 1938. The amino acid sequence of bovine catalase was determined in 1969, and the three-dimensional structure in 1981. The presence of catalase in a microbial or tissue sample can be demonstrated by adding hydrogen peroxide and observing the reaction. The production of oxygen can be seen by the formation of bubbles. This easy test, which can be seen with the naked eye, without the aid of instruments, is possible because catalase has a very high specific activity, which produces a detectable response, as well as the fact that one of the products is a gas. While the complete mechanism of catalase is not currently known, the reaction is believed to occur in two stages: Here Fe()-E represents the iron center of the heme group attached to the enzyme. Fe(IV)-E(.+) is a mesomeric form of Fe(V)-E, meaning the iron is not completely oxidized to +V, but receives some stabilising electron density from the heme ligand, which is then shown as a radical cation (.+). As hydrogen peroxide enters the active site, it interacts with the amino acids Asn148 (asparagine at position 148) and His75, causing a proton (hydrogen ion) to transfer between the oxygen atoms. The free oxygen atom coordinates, freeing the newly formed water molecule and Fe(IV)=O. Fe(IV)=O reacts with a second hydrogen peroxide molecule to reform Fe(III)-E and produce water and oxygen. The reactivity of the iron center may be improved by the presence of the phenolate ligand of Tyr358 in the fifth coordination position, which can assist in the oxidation of the Fe(III) to Fe(IV). The efficiency of the reaction may also be improved by the interactions of His75 and Asn148 with reaction intermediates. In general, the rate of the reaction can be determined by the Michaelis-Menten equation.

[ "Enzyme", "Antioxidant", "Oxidative stress", "super oxide dismutase", "ros scavenging enzymes", "Acatalasia", "Family Cyclobacteriaceae", "Malate Synthetase" ]
Parent Topic
Child Topic
    No Parent Topic