language-icon Old Web
English
Sign In

Aluminium

Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. It is a silvery-white, soft, non-magnetic and ductile metal in the boron group. By mass, aluminium makes up about 8% of the Earth's crust; it is the third most abundant element after oxygen and silicon and the most abundant metal in the crust, though it is less common in the mantle below. The chief ore of aluminium is bauxite. Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is found combined in over 270 different minerals. Aluminium is remarkable for its low density and its ability to resist corrosion through the phenomenon of passivation. Aluminium and its alloys are vital to the aerospace industry and important in transportation and building industries, such as building facades and window frames. The oxides and sulfates are the most useful compounds of aluminium. Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically, but aluminium is well tolerated by plants and animals. Because of these salts' abundance, the potential for a biological role for them is of continuing interest, and studies continue. Of aluminium isotopes, only 27Al is stable. This is consistent with aluminium having an odd atomic number. It is the only aluminium isotope that has existed on Earth in its current form since the creation of the planet. Very nearly all the element on Earth is present as this isotope, which makes aluminium a mononuclidic element and means that its standard atomic weight practically equates to that of the isotope. The standard atomic weight of aluminium is low in comparison with many other metals, which has consequences for the element's properties (see below). All other isotopes of aluminium are radioactive. The most stable of these is 26Al (half-life 720,000 years) and therefore could not have survived since the formation of the planet. However, 26Al is produced from argon in the atmosphere by spallation caused by cosmic ray protons. The ratio of 26Al to 10Be has been used for radiodating of geological processes over 105 to 106 year time scales, in particular transport, deposition, sediment storage, burial times, and erosion. Most meteorite scientists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago. The remaining isotopes of aluminium, with mass numbers ranging from 22 to 43, all have half-lives well under an hour. Three metastable states are known, all with half-lives under a minute. An aluminium atom has 13 electrons, arranged in an electron configuration of 3s23p1, with three electrons beyond a stable noble gas configuration. Accordingly, the combined first three ionization energies of aluminium are far lower than the fourth ionization energy alone. Aluminium can relatively easily surrender its three outermost electrons in many chemical reactions (see below). The electronegativity of aluminium is 1.61 (Pauling scale). A free aluminium atom has a radius of 143 pm. With the three outermost electrons removed, the radius shrinks to 39 pm for a 4-coordinated atom or 53.5 pm for a 6-coordinated atom. At standard temperature and pressure, aluminium atoms (when not affected by atoms of other elements) form a face-centered cubic crystal system bound by metallic bonding provided by atoms' outermost electrons; hence aluminium (at these conditions) is a metal. This crystal system is shared by some other metals, such as lead and copper; the size of a unit cell of aluminium is comparable to that of those other metals.

[ "Composite material", "Organic chemistry", "Metallurgy", "Alloy wheel", "Aluminium bronze", "Aluminium selenide", "AlSiC", "Aluminum Acetate" ]
Parent Topic
Child Topic
    No Parent Topic