language-icon Old Web
English
Sign In

Natural killer T cell

Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 0.1% of all peripheral blood T cells. Natural killer T cells should not be confused with natural killer cells. Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 0.1% of all peripheral blood T cells. Natural killer T cells should not be confused with natural killer cells. The term 'NK T cells' was first used in mice to define a subset of T cells that expressed the natural killer (NK) cell-associated marker NK1.1 (CD161). It is now generally accepted that the term 'NKT cells' refers to CD1d-restricted T cells, present in mice and humans, some of which coexpress a heavily biased, semi-invariant T-cell receptor and NK cell markers. NKT cells are a subset of T cells that coexpress an αβ T-cell receptor, but also express a variety of molecular markers that are typically associated with NK cells, such as NK1.1. The best-known NKT cells differ from conventional αβ T cells in that their T-cell receptors are far more limited in diversity ('invariant' or 'type 1' NKT). They and other CD1d-restricted T cells ('type 2' NKT) recognize lipids and glycolipids presented by CD1d molecules, a member of the CD1 family of antigen-presenting molecules, rather than peptide-major histocompatibility complexes (MHCs). As such, NKT cells are important in recognizing glycolipids from organisms such as Mycobacterium, which causes tuberculosis. NKT cells include both NK1.1+ and NK1.1−, as well as CD4+, CD4−, CD8+ and CD8− cells. Natural killer T cells can share other features with NK cells, as well, such as CD16 and CD56 expression and granzyme production. Invariant natural killer T (iNKT) cells express high levels of and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger for their development. Classification of natural killer T cells into three groups has been proposed: The best-known subset of CD1d-dependent NKT cells expresses an invariant T-cell receptor (TCR) α chain. These are referred to as type I or invariant NKT cells (iNKT) cells. They are notable for their ability to respond rapidly to danger signals and pro-inflammatory cytokines. Once activated, they engage in effector functions, like NK transactivation, T cell activation and differentiation, B cell activation, dendritic cell activation and cross-presentation activity, and macrophage activation. iNKT cells recognize lipid antigens presented by CD1d, a non-polymorphic major histocompatibility complex class I-like antigen presenting molecule. These cells are conserved between humans and mice.The highly conserved TCR is made of Va24-Ja18 paired with Vb11 in humans, which is specific for glycolipid antigens. The best known antigen of iNKT cells is alpha-galactosylceramide(αGalCer), which is a synthetic form of a chemical purified from the deep sea sponge Agelas Mauritanius. iNKT cells develop in the thymus, and distribute to the periphery. They are most commonly found in the liver, but are also found in the thymus, spleen, peripheral blood, bone marrow and fat tissue. In comparison to mice, humans have fewer iNKT cells and have a wide variation in the amount of circulating iNKT cells. Currently, there are five major distinct iNKT cell subsets. These subset cells produce a different set of cytokines once activated. The subtypes iNKT1, iNKT2 and iNKT17 mirror Th Cell subsets in cytokine production. In addition there are subtypes specialized in T follicular helper-like function and Il-10 dependent regulatory functions. Once activated iNKT cells can impact the type and strength of an immune response. They engage in cross talk with other immune cells, like dendritic cells, neutrophils and lymphocytes. Activation occurs by engagement with their invariant TCR. iNKT cells can also be indirectly activated through cytokine signaling.

[ "Cytotoxic T cell", "Receptor", "T cell", "CD8", "CD1D", "Galactosylceramides", "Mouse Natural Killer Cell", "NK Cell Lectin-Like Receptor Subfamily B", "Streptamer" ]
Parent Topic
Child Topic
    No Parent Topic