language-icon Old Web
English
Sign In

Liquid metal cooled reactor

A liquid metal cooled nuclear reactor, liquid metal fast reactor or LMFR is an advanced type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for nuclear submarine use but have also been extensively studied for power generation applications. A liquid metal cooled nuclear reactor, liquid metal fast reactor or LMFR is an advanced type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for nuclear submarine use but have also been extensively studied for power generation applications. Metal coolants remove heat more rapidly and allow much higher power density. This makes them attractive in situations where size and weight are at a premium, like on ships and submarines. To improve cooling with water, most reactor designs are highly pressurized to raise the boiling point, which presents safety and maintenance issues that liquid metal designs lack. Additionally, the high temperature of the liquid metal can be used to produce vapour at higher temperature than in a water cooled reactor, leading to a higher thermodynamic efficiency. This makes them attractive for improving power output in conventional nuclear power plants. Liquid metals, being electrically highly conductive, can be moved by electromagnetic pumps. Disadvantages include difficulties associated with inspection and repair of a reactor immersed in opaque molten metal, and depending on the choice of metal, fire hazard risk (for alkali metals), corrosion and/or production of radioactive activation products may be an issue. In practice, all liquid metal cooled reactors are fast-neutron reactors, and to date most fast neutron reactors have been liquid metal cooled fast breeder reactors (LMFBRs), or naval propulsion units. The liquid metals used typically need good heat transfer characteristics. Fast neutron reactor cores tend to generate a lot of heat in a small space when compared to reactors of other classes. A low neutron absorption is desirable in any reactor coolant, but especially important for a fast reactor, as the good neutron economy of a fast reactor is one of its main advantages. Since slower neutrons are more easily absorbed, the coolant should ideally have a low moderation of neutrons. It is also important that the coolant does not cause excessive corrosion of the structural materials, and that its melting and boiling points are suitable for the reactor's operating temperature. Ideally the coolant should never boil as that would make it more likely to leak out of the system, resulting in a loss-of-coolant accident. Conversely, if the coolant can be prevented from boiling this allows the pressure in the cooling system to remain at neutral levels, and this dramatically reduces the probability of an accident. Some designs immerse the entire reactor and heat exchangers into a pool of coolant, virtually eliminating the risk that inner-loop cooling will be lost. While pressurised water could theoretically be used for a fast reactor, it tends to slow down neutrons and absorb them. This limits the amount of water that can be allowed to flow through the reactor core, and since fast reactors have a high power density most designs use molten metals instead. Water's boiling point is also much lower than most metals demanding that the cooling system be kept at high pressure to effectively cool the core. Clementine was the first liquid metal cooled nuclear reactor and used mercury coolant, thought to be the obvious choice since it is liquid at room temperature. However, because of disadvantages including high toxicity, high vapor pressure even at room temperature, low boiling point, producing noxious fumes when heated, relatively low thermal conductivity, and a high neutron cross-section, it has fallen out of favor. Sodium and NaK (a eutectic sodium-potassium alloy) do not corrode steel to any significant degree and are compatible with many nuclear fuels, allowing for a wide choice of structural materials. They do, however, ignite spontaneously on contact with air and react violently with water, producing hydrogen gas. This was the case at the Monju Nuclear Power Plant in a 1995 accident and fire. Neutron activation of sodium also causes these liquids to become intensely radioactive during operation, though the half-life is short and therefore their radioactivity does not pose an additional disposal concern. There are two proposals for a sodium cooled Gen IV LMFR, one based on oxide fuel, the other on the metal fueled Integral Fast Reactor.

[ "Nuclear reactor", "Liquid metal", "Coolant" ]
Parent Topic
Child Topic
    No Parent Topic