language-icon Old Web
English
Sign In

Arch

An arch is a vertical curved structure that spans an elevated space and may or may not support the weight above it, or in case of a horizontal arch like an arch dam, the hydrostatic pressure against it. Arches may be synonymous with vaults, but a vault may be distinguished as a continuous arch forming a roof. Arches appeared as early as the 2nd millennium BC in Mesopotamian brick architecture, and their systematic use started with the ancient Romans, who were the first to apply the technique to a wide range of structures. An arch is a pure compression form. It can span a large area by resolving forces into compressive stresses and, in turn eliminating tensile stresses. This is sometimes referred to as arch action. As the forces in the arch are carried to the ground, the arch will push outward at the base, called thrust. As the rise, or height of the arch decreases, the outward thrust increases. In order to maintain arch action and prevent the arch from collapsing, the thrust needs to be restrained, either with internal ties or external bracing, such as abutments. The most common true arch configurations are the fixed arch, the two-hinged arch, and the three-hinged arch. The fixed arch is most often used in reinforced concrete bridge and tunnel construction, where the spans are short. Because it is subject to additional internal stress caused by thermal expansion and contraction, this type of arch is considered to be statically indeterminate. The two-hinged arch is most often used to bridge long spans. This type of arch has pinned connections at the base. Unlike the fixed arch, the pinned base is able to rotate, allowing the structure to move freely and compensate for the thermal expansion and contraction caused by changes in outdoor temperature. However, this can result in additional stresses, so the two-hinged arch is also statically indeterminate, although not to the degree of the fixed arch. The three-hinged arch is not only hinged at its base, like the two-hinged arch, but at the mid-span as well. The additional connection at the mid-span allows the three-hinged arch to move in two opposite directions and compensate for any expansion and contraction. This type of arch is thus not subject to additional stress caused by thermal change. The three-hinged arch is therefore said to be statically determinate. It is most often used for medium-span structures, such as large building roofs. Another advantage of the three-hinged arch is that the pinned bases are more easily developed than fixed ones, allowing for shallow, bearing-type foundations in medium-span structures. In the three-hinged arch, 'thermal expansion and contraction of the arch will cause vertical movements at the peak pin joint but will have no appreciable effect on the bases,' further simplifying the foundation design.

[ "Structural engineering", "Civil engineering", "Archaeology", "Utility model", "Teeth crowding", "Alveolar arch", "Metronidazole Hydrochloride", "Hyoid arch", "Branchial Region" ]
Parent Topic
Child Topic
    No Parent Topic