Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Bioplastic can be made from agricultural by-products and also from used plastic bottles and other containers using microorganisms. Common plastics, such as fossil-fuel plastics (also called petrobased polymers) are derived from petroleum or natural gas. Not all bioplastics are biodegradable nor biodegrade more readily than commodity fossil-fuel derived plastics. Bioplastics are usually derived from sugar derivatives, including starch, cellulose, and lactic acid. As of 2014, bioplastics represented approximately 0.2% of the global polymer market (300 million tons).that which is capable of undergoing biological decomposition in a compost site such that the material is not visually distinguishable and breaks down into carbon dioxide, water, inorganic compounds and biomass at a rate consistent with known compostable materials.This guide covered suggested criteria, procedures, and a general approach to establish the compostability of environmentally degradable plastics. Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Bioplastic can be made from agricultural by-products and also from used plastic bottles and other containers using microorganisms. Common plastics, such as fossil-fuel plastics (also called petrobased polymers) are derived from petroleum or natural gas. Not all bioplastics are biodegradable nor biodegrade more readily than commodity fossil-fuel derived plastics. Bioplastics are usually derived from sugar derivatives, including starch, cellulose, and lactic acid. As of 2014, bioplastics represented approximately 0.2% of the global polymer market (300 million tons). Bioplastics are used for disposable items, such as packaging, crockery, cutlery, pots, bowls, and straws. Few commercial applications exist for bioplastics. In principle they could replace many applications for petroleum-derived plastics, however cost and performance remain problematic. As a matter of fact, their usage is financially favourable only if supported by specific regulations limiting the usage of conventional plastics. Typical is the example of Italy, where biodegradable plastic bags and shoppers are compulsory since 2011 with the introduction of a specific law. Beyond structural materials, electroactive bioplastics are being developed that promise to be used to carry electric current. Biopolymers are available as coatings for paper rather than the more common petrochemical coatings. Thermoplastic starch currently represents the most widely used bioplastic, constituting about 50 percent of the bioplastics market. Simple starch bioplastic can be made at home. Pure starch is able to absorb humidity, and is thus a suitable material for the production of drug capsules by the pharmaceutical sector. Flexibiliser and plasticiser such as sorbitol and glycerine can also be added so the starch can also be processed thermo-plastically. The characteristics of the resulting bioplastic (also called 'thermo-plastical starch') can be tailored to specific needs by adjusting the amounts of these additives. Starch-based bioplastics are often blended with biodegradable polyesters to produce starch/polylactic acid, starch/polycaprolactone or starch/Ecoflex (polybutylene adipate-co-terephthalate produced by BASF). blends. These blends are used for industrial applications and are also compostable. Other producers, such as Roquette, have developed other starch/polyolefin blends. These blends are not biodegradable, but have a lower carbon footprint than petroleum-based plastics used for the same applications. Due to the origin of its raw material, starch is cheap, abundant, and renewable. Starch based plastics are complex blends of starch with compostable plastics such as Polylactic acid, Polybutylene Adipate Terephthalate, Polybutylene Succinate, Polycaprolactone, and Polyhydroxyalkanoates. These complex blends improve water resistance as well as processing and mechanical properties. Starch-based films (mostly used for packaging purposes) are made mainly from starch blended with thermoplastic polyesters to form biodegradable and compostable products. These films are seen specifically in consumer goods packaging of magazine wrappings and bubble films. In food packaging, these films are seen as bakery or fruit and vegetable bags. Composting bags with this films are used in selective collecting of organic waste. Further, a new starch-based film was developed by Agricultural Research Service scientists can even be used as a paper.