language-icon Old Web
English
Sign In

Alkyne

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic but tend to be more reactive. In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic but tend to be more reactive. Alkynes are characteristically more unsaturated than alkenes. Thus they add two equivalents of bromine whereas an alkene adds only one equivalent in the reaction. Other reactions are listed below. In some reactions, alkynes are less reactive than alkenes. For example, in a molecule with an -ene and an -yne group, addition occurs preferentially at the -ene. Possible explanations involve the two π-bonds in the alkyne delocalising, which would reduce the energy of the π-system or the stability of the intermediates during the reaction.They show greater tendency to polymerize or oligomerize than alkenes do. The resulting polymers, called polyacetylenes (which do not contain alkyne units) are conjugated and can exhibit semiconducting properties. In acetylene, the H–C≡C bond angles are 180°. By virtue of this bond angle, alkynes are rod-like. Correspondingly, cyclic alkynes are rare. Benzyne is highly unstable. The C≡C bond distance of 121 picometers is much shorter than the C=C distance in alkenes (134 pm) or the C–C bond in alkanes (153 pm). The triple bond is very strong with a bond strength of 839 kJ/mol. The sigma bond contributes 369 kJ/mol, the first pi bond contributes 268 kJ/mol and the second pi-bond of 202 kJ/mol bond strength. Bonding usually discussed in the context of molecular orbital theory, which recognizes the triple bond as arising from overlap of s and p orbitals. In the language of valence bond theory, the carbon atoms in an alkyne bond are sp hybridized: they each have two unhybridized p orbitals and two sp hybrid orbitals. Overlap of an sp orbital from each atom forms one sp–sp sigma bond. Each p orbital on one atom overlaps one on the other atom, forming two pi bonds, giving a total of three bonds. The remaining sp orbital on each atom can form a sigma bond to another atom, for example to hydrogen atoms in the parent acetylene. The two sp orbitals project on opposite sides of the carbon atom. Internal alkynes feature carbon substituents on each acetylenic carbon. Symmetrical examples include diphenylacetylene and 3-hexyne. Terminal alkynes have the formula RC2H. An example is methylacetylene (propyne using IUPAC nomenclature). Terminal alkynes, like acetylene itself, are mildly acidic, with pKa values of around 25. They are far more acidic than alkenes and alkanes, which have pKa values of around 40 and 50, respectively. The acidic hydrogen on terminal alkynes can be replaced by a variety of groups resulting in halo-, silyl-, and alkoxoalkynes. The carbanions generated by deprotonation of terminal alkynes are called acetylides. In systematic chemical nomenclature, alkynes are named with the Greek prefix system without any additional letters. Examples include ethyne or octyne. In parent chains with four or more carbons, it is necessary to say where the triple bond is located. For octyne, one can either write 3-octyne or oct-3-yne when the bond starts at the third carbon. The lowest number possible is given to the triple bond. When no superior functional groups are present, the parent chain must include the triple bond even if it is not the longest possible carbon chain in the molecule. Ethyne is commonly called by its trivial name acetylene. In chemistry, the suffix -yne is used to denote the presence of a triple bond. In organic chemistry, the suffix often follows IUPAC nomenclature. However, inorganic compounds featuring unsaturation in the form of triple bonds may be denoted by substitutive nomenclature with the same methods used with alkynes (i.e. the name of the corresponding saturated compound is modified by replacing the '-ane' ending with '-yne'). '-diyne' is used when there are two triple bonds, and so on. The position of unsaturation is indicated by a numerical locant immediately preceding the '-yne' suffix, or 'locants' in the case of multiple triple bonds. Locants are chosen so that the numbers are low as possible. '-yne' is also used as an infix to name substituent groups that are triply bound to the parent compound. Sometimes a number between hyphens is inserted before it to state which atoms the triple bond is between. This suffix arose as a collapsed form of the end of the word 'acetylene'. The final '-e' disappears if it is followed by another suffix that starts with a vowel.

[ "Catalysis", "Amphidinolide P", "A3 coupling reaction", "Alkyne synthesis", "Cycloalkyne", "Alkyne Compound" ]
Parent Topic
Child Topic
    No Parent Topic