language-icon Old Web
English
Sign In

Azeotrope

An azeotrope (/əˈziːəˌtroʊp/) or a constant boiling point mixture is a mixture of two or more liquids whose proportions cannot be altered or changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Because their composition is unchanged by distillation, azeotropes are also called (especially in older texts) constant boiling point mixtures.1. Low-pressure rectification (A to B)2. High-pressure rectification (C to D)3. Low-pressure stripping (E to target purity) An azeotrope (/əˈziːəˌtroʊp/) or a constant boiling point mixture is a mixture of two or more liquids whose proportions cannot be altered or changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Because their composition is unchanged by distillation, azeotropes are also called (especially in older texts) constant boiling point mixtures. Many azeotropic mixtures of pairs of compounds are known, and many azeotropes of three or more compounds are also known. In such a case it is not possible to separate the components by fractional distillation. There are two types of azeotropes: minimum boiling azeotrope and maximum boiling azeotrope. A solution that shows greater positive deviation from Raoult's law forms a minimum boiling azeotrope at a specific composition. For example, an ethanol-water mixture (obtained by fermentation of sugars) on fractional distillation yields a solution containing approximately 95% by volume of ethanol. Once this composition has been achieved, the liquid and vapour have the same composition, and no further separation occurs. A solution that shows large negative deviation from Raoult's law forms a maximum boiling azeotrope at a specific composition. Nitric acid and water is an example of this class of azeotrope. This azeotrope has an approximate composition of 68% nitric acid and 32% water by mass, with a boiling point of 393.5 K (120.4 °C). The term azeotrope is derived from the Greek words ζέειν (boil) and τρόπος (turning) with the prefix α- (no) to give the overall meaning, 'no change on boiling'. The term was coined in 1911 by English chemist John Wade and Richard William Merriman. Each azeotrope has a characteristic boiling point. The boiling point of an azeotrope is either less than the boiling point temperatures of any of its constituents (a positive azeotrope), or greater than the boiling point of any of its constituents (a negative azeotrope). A well-known example of a positive azeotrope is 95.63% ethanol and 4.37% water (by mass) boils at 78.2 °C.Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. Indeed, 78.2 °C is the minimum temperature at which any ethanol/water solution can boil at atmospheric pressure. In general, a positive azeotrope boils at a lower temperature than any other ratio of its constituents. Positive azeotropes are also called minimum boiling mixtures or pressure maximum azeotropes. In general, a negative azeotrope boils at a higher temperature than any other ratio of its constituents. Negative azeotropes are also called maximum boiling mixtures or pressure minimum azeotropes. An example of a negative azeotrope is hydrochloric acid at a concentration of 20.2% and 79.8% water (by mass). Hydrogen chloride boils at −84 °C and water at 100 °C, but the azeotrope boils at 110 °C, which is higher than either of its constituents. The maximum temperature at which any hydrochloric acid solution can boil is 110 °C. Other examples: If the constituents of a mixture are completely miscible in all proportions with each other, the type of azeotrope is called a homogeneous azeotrope. For example, any amount of ethanol can be mixed with any amount of water to form a homogeneous solution. If the constituents are not completely miscible, an azeotrope can be found inside the miscibility gap. This type of azeotrope is called heterogeneous azeotrope or heteroazeotrope. A heteroazeotropic distillation will have two liquid phases. For example, acetone / methanol / chloroform form an intermediate boiling (saddle) azeotrope. For example, if equal volumes of chloroform (water solubility 0.8 g/100 ml at 20 °C) and water are shaken together and then left to stand, the liquid will separate into two layers. Analysis of the layers shows that the top layer is mostly water with a small amount of chloroform dissolved in it, and the bottom layer is mostly chloroform with a small amount of water dissolved in it. If the two layers are heated together, the system of layers will boil at 53.3 °C, which is lower than either the boiling point of chloroform (61.2 °C) or the boiling point of water (100 °C). The vapor will consist of 97.0% chloroform and 3.0% water regardless of how much of each liquid layer is present provided both layers are indeed present. If the vapor is re-condensed, the layers will reform in the condensate, and will do so in a fixed ratio, which in this case is 4.4% of the volume in the top layer and 95.6% in the bottom layer. Such a system of solvents is known as a heteroazeotrope. Heteroazeotropes are always minimum boiling mixtures.

[ "Chromatography", "Thermodynamics", "Organic chemistry", "Solvent", "Distillation", "Pentafluoropropane", "1,1-Dichloro-1-fluoroethane", "Azeotropic distillation", "1,2-Butanediol", "Relative volatility" ]
Parent Topic
Child Topic
    No Parent Topic