language-icon Old Web
English
Sign In

Refrigerant

A refrigerant is a substance or mixture, usually a fluid, used in a heat pump and refrigeration cycle. In most cycles it undergoes phase transitions from a liquid to a gas and back again. Many working fluids have been used for such purposes. Fluorocarbons, especially chlorofluorocarbons, became commonplace in the 20th century, but they are being phased out because of their ozone depletion effects. Other common refrigerants used in various applications are ammonia, sulfur dioxide, and non-halogenated hydrocarbons such as propane. A refrigerant is a substance or mixture, usually a fluid, used in a heat pump and refrigeration cycle. In most cycles it undergoes phase transitions from a liquid to a gas and back again. Many working fluids have been used for such purposes. Fluorocarbons, especially chlorofluorocarbons, became commonplace in the 20th century, but they are being phased out because of their ozone depletion effects. Other common refrigerants used in various applications are ammonia, sulfur dioxide, and non-halogenated hydrocarbons such as propane. The ideal working fluid or often called refrigerant would have favorable thermodynamic properties, be noncorrosive to mechanical components, and be safe, including freedom from toxicity and flammability. It would not cause ozone depletion or climate change. Since different fluids have the desired traits in different degree, choice is a matter of trade-offs. The desired thermodynamic properties are a boiling point somewhat below the target temperature, a high heat of vaporization, a moderate density in liquid form, a relatively high density in gaseous form, and a high critical temperature. Since boiling point and gas density are affected by pressure, refrigerants may be made more suitable for a particular application by appropriate choice of operating pressures. A 2018 study by the nonprofit organization 'Drawdown' put proper refrigerant management and disposal at the very top of the list of climate impact solutions, with an impact equivalent to eliminating over 17 years of US carbon dioxide emissions. The inert nature of many haloalkanes, chlorofluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC), particularly CFC-11 and CFC-12, made them preferred choices among refrigerants for many years because of their non-flammability and non-toxicity. However, their stability in the atmosphere and their corresponding global warming potential and ozone depletion potential raised concerns about their usage. This led to their replacement with HFCs and PFCs, especially HFC-134a, which are not-ozone depleting, and have lesser global warming potentials. However, these refrigerants still have global warming potentials thousands of times greater than CO2. Therefore, they are now being replaced in markets where leaks are likely, by using a fourth generation of refrigerants, most prominently HFO-1234yf, which have global warming potentials much closer to that of CO2.

[ "Mechanics", "Mechanical engineering", "Thermodynamics", "Organic chemistry", "Heat exchanger", "Polyolester", "Vapor-compression refrigeration", "Thermal expansion valve", "ideal gas heat capacity", "Zeotropic mixture" ]
Parent Topic
Child Topic
    No Parent Topic