Digital Enhanced Cordless Telecommunications

Digital Enhanced Cordless Telecommunications (Digital European Cordless Telecommunications), usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the universal standard, replacing earlier cordless phone standards, such as 900 MHz CT1 and CT2. Beyond Europe, it has been adopted by Australia, and most countries in Asia and South America. North American adoption was delayed by United States radio frequency regulations. This forced development of a variation of DECT, called DECT 6.0, using a slightly different frequency range which makes these units incompatible with systems intended for use in other areas, even from the same manufacturer. DECT has almost universally replaced other standards in most countries where it is used, with the exception of North America. DECT was originally intended for fast roaming between networked base stations and the first DECT product was Net3 wireless LAN. However, its most popular application is single-cell cordless phones connected to traditional analog telephone, primarily in home and small office systems, though gateways with multi-cell DECT and/or DECT repeaters are also available in many private branch exchange (PBX) systems for medium and large businesses produced by Panasonic, Mitel, Gigaset, Snom, BT Business, Spectralink, and RTX Telecom. DECT can also be used for purposes other than cordless phones, such as baby monitors and industrial sensors. The ULE Alliance's DECT ULE and its HAN FUN protocol are variants tailored for home security, automation, and the internet of things (IoT). The DECT standard includes the generic access profile (GAP), a common interoperability profile for simple telephone capabilities, which most manufacturers implement. GAP-conformance enables DECT handsets and bases from different manufacturers to interoperate at the most basic level of functionality, that of making and receiving calls. New Generation DECT (NG-DECT) standard, marketed as CAT-iq by the DECT Forum, provides a common set of advanced capabilities for handsets and base stations. CAT-iq allows interchangeability across IP-DECT base stations and handsets from different manufacturers, while maintaining backward-compatibility with GAP equipment. It also requires mandatory support for wideband audio. The DECT standard was developed by ETSI in several phases, the first of which took place between 1988 and 1992 when the first round of standards were published. These were the ETS 300-175 series in nine parts defining the air interface, and ETS 300-176 defining how the units should be type approved. A technical report, ETR-178, was also published to explain the standard. Subsequent standards were developed and published by ETSI to cover interoperability profiles and standards for testing. Named Digital European Cordless Telephone at its launch by CEPT in November 1987; its name was soon changed to Digital European Cordless Telecommunications, following a suggestion by Enrico Tosato of Italy, to reflect its broader range of application including data services. In 1995, due to its more global usage, the name was changed from European to Enhanced. DECT is recognized by the ITU as fulfilling the IMT-2000 requirements and thus qualifies as a 3G system. Within the IMT-2000 group of technologies, DECT is referred to as IMT-2000 Frequency Time (IMT-FT). DECT was developed by ETSI but has since been adopted by many countries all over the World. The original DECT frequency band (1880–1900 MHz) is used in all countries in Europe. Outside Europe, it is used in most of Asia, Australia and South America. In the United States, the Federal Communications Commission in 2005 changed channelization and licensing costs in a nearby band (1920–1930 MHz, or 1.9 GHz), known as Unlicensed Personal Communications Services (UPCS), allowing DECT devices to be sold in the U.S. with only minimal changes. These channels are reserved exclusively for voice communication applications and therefore are less likely to experience interference from other wireless devices such as baby monitors and wireless networks.

[ "Electronic engineering", "Computer network", "Telecommunications", "Wireless", "Operating system", "corDECT" ]
Parent Topic
Child Topic
    No Parent Topic