language-icon Old Web
English
Sign In

Bessel function

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number α, the order of the Bessel function. Although α and −α produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of α. The most important cases are when α is an integer or half-integer. Bessel functions for integer α are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer α are obtained when the Helmholtz equation is solved in spherical coordinates. Bessel's equation arises when finding separable solutions to Laplace's equation and the Helmholtz equation in cylindrical or spherical coordinates. Bessel functions are therefore especially important for many problems of wave propagation and static potentials. In solving problems in cylindrical coordinate systems, one obtains Bessel functions of integer order (α = n); in spherical problems, one obtains half-integer orders (α = n + 1/2). For example: Bessel functions also appear in other problems, such as signal processing (e.g., see FM synthesis, Kaiser window, or Bessel filter). Because this is a second-order differential equation, there must be two linearly independent solutions. Depending upon the circumstances, however, various formulations of these solutions are convenient. Different variations are summarized in the table below and described in the following sections. Bessel functions of the second kind and the spherical Bessel functions of the second kind are sometimes denoted by Nn and nn respectively, rather than Yn and yn. Bessel functions of the first kind, denoted as Jα(x), are solutions of Bessel's differential equation that are finite at the origin (x = 0) for integer or positive α and diverge as x approaches zero for negative non-integer α. It is possible to define the function by its series expansion around x = 0, which can be found by applying the Frobenius method to Bessel's equation:

[ "Calculus", "Quantum mechanics", "Optics", "Mathematical analysis", "Hankel transform", "Bessel potential", "Bessel beam", "bessel distribution", "Sombrero function" ]
Parent Topic
Child Topic
    No Parent Topic