language-icon Old Web
English
Sign In

Spectral shape analysis

Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc. Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc. The Laplace–Beltrami operator is involved in many important differential equations, such as the heat equation and the wave equation. It can be defined on a Riemannian manifold as the divergence of the gradient of a real-valued function f: Its spectral components can be computed by solving the Helmholtz equation (or Laplacian eigenvalue problem): The solutions are the eigenfunctions φ i {displaystyle varphi _{i}} (modes) and corresponding eigenvalues λ i {displaystyle lambda _{i}} , representing a diverging sequence of positive real numbers. The first eigenvalue is zero for closed domains or when using the Neumann boundary condition. For some shapes, the spectrum can be computed analytically (e.g. rectangle, flat torus, cylinder, disk or sphere). For the sphere, for example, the eigenfunctions are the spherical harmonics.

[ "Spectral line" ]
Parent Topic
Child Topic
    No Parent Topic