language-icon Old Web
English
Sign In

Medical physics

Medical physics (also called biomedical physics, medical biophysics, applied physics in medicine, physics applications in medical science, radiological physics or hospital radio-physics) is, in general, the application of physics concepts, theories, and methods to medicine or healthcare. Medical physics departments may be found in hospitals or universities.'Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g., x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. The scope includes risks to volunteers in biomedical research, carers and comforters. The scope often includes risks to workers and public particularly when these impact patient risk' Medical physics (also called biomedical physics, medical biophysics, applied physics in medicine, physics applications in medical science, radiological physics or hospital radio-physics) is, in general, the application of physics concepts, theories, and methods to medicine or healthcare. Medical physics departments may be found in hospitals or universities. In the case of hospital work, the term medical physicist is the title of a specific healthcare profession, usually working within a hospital. Medical physicists are often found in the following healthcare specialties: diagnostic and interventional radiology (also known as medical imaging), nuclear medicine, radiation protection and radiation oncology. University departments are of two types. The first type are mainly concerned with preparing students for a career as a hospital medical physicist and research focuses on improving the practice of the profession. A second type (increasingly called 'biomedical physics') has a much wider scope and may include research in any applications of physics to medicine from the study of biomolecular structure to microscopy and nanomedicine. For example, physicist Richard Feynman theorized about the future of nanomedicine. He wrote about the idea of a medical use for biological machines (see nanobiotechnology). Feynman and Albert Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) 'swallow the doctor'. The idea was discussed in Feynman's 1959 essay There's Plenty of Room at the Bottom. In the case of hospital medical physics departments, the mission statement for medical physicists as adopted by the European Federation of Medical Physicists is the following: The term 'physical agents' refers to ionising and non-ionising electromagnetic radiations, static electric and magnetic fields, ultrasound, laser light and any other Physical Agent associated with medical e.g., x-rays in computerised tomography (CT), gamma rays/radionuclides in nuclear medicine, magnetic fields and radio-frequencies in magnetic resonance imaging (MRI), ultrasound in ultrasound imaging and Doppler measurements.

[ "Medicine", "Physics", "Pediatric nuclear medicine", "Dihydromonocalcium phosphate", "absolute point", "oncology hematology", "Radiation Oncology specialty" ]
Parent Topic
Child Topic
    No Parent Topic